A numerical study of the metal jet induced by a shock wave

In this work, a metal jet induced by a shock wave is studied numerically. Different from the previous works on metal jets, we apply a cut-cell based sharp interface numerical method for the study. The evolution of jets is simulated by the in house code CCGF [X. Bai and X. Deng, Adv. Appl. Math. Mech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-10, Vol.128 (13)
Hauptverfasser: Bai, Xiao, Li, Maojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Journal of applied physics
container_volume 128
creator Bai, Xiao
Li, Maojun
description In this work, a metal jet induced by a shock wave is studied numerically. Different from the previous works on metal jets, we apply a cut-cell based sharp interface numerical method for the study. The evolution of jets is simulated by the in house code CCGF [X. Bai and X. Deng, Adv. Appl. Math. Mech. 9(5), 1052–1075 (2017)], and the interfacial growth rate is computed and compared with some theoretical models. Various initial conditions, including disturbance amplitude and shock wave strength, are considered here. Based on the model of Karkhanis et al. [J. Appl. Phys. 123, 025902 (2018)], a modified model of the spike velocity is presented to achieve better consistency between the numerical simulation and the model formula under more wide initial conditions (here, the scaled perturbed amplitudes involved are 0.125 and 4, and the incident shock wave Mach number is from 2.5 to 8) in this paper. In order to extend the applicability of the empirical models, an approximate formula for the initial velocity V 0 is also obtained; a direct prediction of the spike velocity will become possible when the initial perturbed amplitude and incident shock intensity are known. Relevant figures show that the modified model can estimate a more consistent result with the numerical simulation than the VK or GD model.
doi_str_mv 10.1063/5.0019811
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0019811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448011746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-963092668e534b372540e6f17977516fc41751023a8de718ef911f25515da4a23</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNZOPTeKtFL-g4EXPIc0mdGu7W5NsZf-9Ky16EDwNDA_vMC9Cl0AmQEp2KyaEgFYAR2gEROlCCkGO0YgQCoXSUp-is5RWAwLF9AjdTXHTbXysnV3jlLuqx23AeenxxudhtfIZ103VOV_hRY8tTsvWveNPu_Pn6CTYdfIXhzlGbw_3r7OnYv7y-DybzgtHlcyFLhnRtCyVF4wvmKSCE18GkFpKAWVwHIZJKLOq8hKUDxogUCFAVJZbysboap-7je1H51M2q7aLzXDSUM7V8Ink5aCu98rFNqXog9nGemNjb4CY72qMMIdqBnuzt8nV2ea6bX7wro2_0Gyr8B_-m_wFGaluGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448011746</pqid></control><display><type>article</type><title>A numerical study of the metal jet induced by a shock wave</title><source>Scitation (American Institute of Physics)</source><source>Alma/SFX Local Collection</source><creator>Bai, Xiao ; Li, Maojun</creator><creatorcontrib>Bai, Xiao ; Li, Maojun</creatorcontrib><description>In this work, a metal jet induced by a shock wave is studied numerically. Different from the previous works on metal jets, we apply a cut-cell based sharp interface numerical method for the study. The evolution of jets is simulated by the in house code CCGF [X. Bai and X. Deng, Adv. Appl. Math. Mech. 9(5), 1052–1075 (2017)], and the interfacial growth rate is computed and compared with some theoretical models. Various initial conditions, including disturbance amplitude and shock wave strength, are considered here. Based on the model of Karkhanis et al. [J. Appl. Phys. 123, 025902 (2018)], a modified model of the spike velocity is presented to achieve better consistency between the numerical simulation and the model formula under more wide initial conditions (here, the scaled perturbed amplitudes involved are 0.125 and 4, and the incident shock wave Mach number is from 2.5 to 8) in this paper. In order to extend the applicability of the empirical models, an approximate formula for the initial velocity V 0 is also obtained; a direct prediction of the spike velocity will become possible when the initial perturbed amplitude and incident shock intensity are known. Relevant figures show that the modified model can estimate a more consistent result with the numerical simulation than the VK or GD model.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0019811</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplitudes ; Applied physics ; Computer simulation ; Initial conditions ; Mach number ; Mathematical models ; Numerical methods ; Shock waves ; Spikes</subject><ispartof>Journal of applied physics, 2020-10, Vol.128 (13)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-963092668e534b372540e6f17977516fc41751023a8de718ef911f25515da4a23</cites><orcidid>0000-0001-7016-7963 ; 0000-0001-6064-3591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0019811$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Bai, Xiao</creatorcontrib><creatorcontrib>Li, Maojun</creatorcontrib><title>A numerical study of the metal jet induced by a shock wave</title><title>Journal of applied physics</title><description>In this work, a metal jet induced by a shock wave is studied numerically. Different from the previous works on metal jets, we apply a cut-cell based sharp interface numerical method for the study. The evolution of jets is simulated by the in house code CCGF [X. Bai and X. Deng, Adv. Appl. Math. Mech. 9(5), 1052–1075 (2017)], and the interfacial growth rate is computed and compared with some theoretical models. Various initial conditions, including disturbance amplitude and shock wave strength, are considered here. Based on the model of Karkhanis et al. [J. Appl. Phys. 123, 025902 (2018)], a modified model of the spike velocity is presented to achieve better consistency between the numerical simulation and the model formula under more wide initial conditions (here, the scaled perturbed amplitudes involved are 0.125 and 4, and the incident shock wave Mach number is from 2.5 to 8) in this paper. In order to extend the applicability of the empirical models, an approximate formula for the initial velocity V 0 is also obtained; a direct prediction of the spike velocity will become possible when the initial perturbed amplitude and incident shock intensity are known. Relevant figures show that the modified model can estimate a more consistent result with the numerical simulation than the VK or GD model.</description><subject>Amplitudes</subject><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Initial conditions</subject><subject>Mach number</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Shock waves</subject><subject>Spikes</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNZOPTeKtFL-g4EXPIc0mdGu7W5NsZf-9Ky16EDwNDA_vMC9Cl0AmQEp2KyaEgFYAR2gEROlCCkGO0YgQCoXSUp-is5RWAwLF9AjdTXHTbXysnV3jlLuqx23AeenxxudhtfIZ103VOV_hRY8tTsvWveNPu_Pn6CTYdfIXhzlGbw_3r7OnYv7y-DybzgtHlcyFLhnRtCyVF4wvmKSCE18GkFpKAWVwHIZJKLOq8hKUDxogUCFAVJZbysboap-7je1H51M2q7aLzXDSUM7V8Ink5aCu98rFNqXog9nGemNjb4CY72qMMIdqBnuzt8nV2ea6bX7wro2_0Gyr8B_-m_wFGaluGQ</recordid><startdate>20201007</startdate><enddate>20201007</enddate><creator>Bai, Xiao</creator><creator>Li, Maojun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7016-7963</orcidid><orcidid>https://orcid.org/0000-0001-6064-3591</orcidid></search><sort><creationdate>20201007</creationdate><title>A numerical study of the metal jet induced by a shock wave</title><author>Bai, Xiao ; Li, Maojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-963092668e534b372540e6f17977516fc41751023a8de718ef911f25515da4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Initial conditions</topic><topic>Mach number</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Shock waves</topic><topic>Spikes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Xiao</creatorcontrib><creatorcontrib>Li, Maojun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Xiao</au><au>Li, Maojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study of the metal jet induced by a shock wave</atitle><jtitle>Journal of applied physics</jtitle><date>2020-10-07</date><risdate>2020</risdate><volume>128</volume><issue>13</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this work, a metal jet induced by a shock wave is studied numerically. Different from the previous works on metal jets, we apply a cut-cell based sharp interface numerical method for the study. The evolution of jets is simulated by the in house code CCGF [X. Bai and X. Deng, Adv. Appl. Math. Mech. 9(5), 1052–1075 (2017)], and the interfacial growth rate is computed and compared with some theoretical models. Various initial conditions, including disturbance amplitude and shock wave strength, are considered here. Based on the model of Karkhanis et al. [J. Appl. Phys. 123, 025902 (2018)], a modified model of the spike velocity is presented to achieve better consistency between the numerical simulation and the model formula under more wide initial conditions (here, the scaled perturbed amplitudes involved are 0.125 and 4, and the incident shock wave Mach number is from 2.5 to 8) in this paper. In order to extend the applicability of the empirical models, an approximate formula for the initial velocity V 0 is also obtained; a direct prediction of the spike velocity will become possible when the initial perturbed amplitude and incident shock intensity are known. Relevant figures show that the modified model can estimate a more consistent result with the numerical simulation than the VK or GD model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0019811</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7016-7963</orcidid><orcidid>https://orcid.org/0000-0001-6064-3591</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-10, Vol.128 (13)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0019811
source Scitation (American Institute of Physics); Alma/SFX Local Collection
subjects Amplitudes
Applied physics
Computer simulation
Initial conditions
Mach number
Mathematical models
Numerical methods
Shock waves
Spikes
title A numerical study of the metal jet induced by a shock wave
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20of%20the%20metal%20jet%20induced%20by%20a%20shock%20wave&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bai,%20Xiao&rft.date=2020-10-07&rft.volume=128&rft.issue=13&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0019811&rft_dat=%3Cproquest_cross%3E2448011746%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448011746&rft_id=info:pmid/&rfr_iscdi=true