Rational limit cycles on generalized Bernouilli polynomial equations

We determine the maximum number of rational limit cycles of the generalized Bernouilli polynomial equations a(x)dy/dx = A(x)yn + B(x)y, where a(x), A(x), and B(x) are real polynomials with a(x)A(x) ≢ 0, n ≥ 3. In particular, we show that when n = 3, there are equations with six rational limit cycles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-03, Vol.62 (3)
1. Verfasser: Valls, Clàudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator Valls, Clàudia
description We determine the maximum number of rational limit cycles of the generalized Bernouilli polynomial equations a(x)dy/dx = A(x)yn + B(x)y, where a(x), A(x), and B(x) are real polynomials with a(x)A(x) ≢ 0, n ≥ 3. In particular, we show that when n = 3, there are equations with six rational limit cycles. We also show that the addressed problem can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then, we approach these equations by applying several tools; in particular, some developed to study extending Fermat problems for polynomial equations.
doi_str_mv 10.1063/5.0015230
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0015230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494674966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-96b7cdb67032b9ed4832aa3a109be837f61246722cb27e655c4d5d4a9056bdb23</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcYcKUwNffLUusVCoLoOmQyGUlJJ9NkRqhP79iKLgRXZ_P9P-ccAE4RnCHIySWbQYgYJnAPTBCUqhScyX0wgRDjElMpD8FRzssRIUnpBNw8m97H1oQi-JXvC7uxweUitsWba10ywX-4urh2qY2DD8EXXQybNq78mHDrYRvOx-CgMSG7k-85Ba93ty_zh3LxdP84v1qUlmDRl4pXwtYVF5DgSrmaSoKNIQZBVTlJRMMRplxgbCssHGfM0prV1CjIeFVXmEzB2a63S3E9uNzrZRzSuHzWmKoxShXnozrfKZtizsk1ukt-ZdJGI6i_nqSZ_n7SaC92Nlvfb4_5we8x_ULd1c1_-G_zJ58IdOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494674966</pqid></control><display><type>article</type><title>Rational limit cycles on generalized Bernouilli polynomial equations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Valls, Clàudia</creator><creatorcontrib>Valls, Clàudia</creatorcontrib><description>We determine the maximum number of rational limit cycles of the generalized Bernouilli polynomial equations a(x)dy/dx = A(x)yn + B(x)y, where a(x), A(x), and B(x) are real polynomials with a(x)A(x) ≢ 0, n ≥ 3. In particular, we show that when n = 3, there are equations with six rational limit cycles. We also show that the addressed problem can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then, we approach these equations by applying several tools; in particular, some developed to study extending Fermat problems for polynomial equations.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0015230</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Cycle ratio ; Mathematical analysis ; Physics ; Polynomials</subject><ispartof>Journal of mathematical physics, 2021-03, Vol.62 (3)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-96b7cdb67032b9ed4832aa3a109be837f61246722cb27e655c4d5d4a9056bdb23</citedby><cites>FETCH-LOGICAL-c327t-96b7cdb67032b9ed4832aa3a109be837f61246722cb27e655c4d5d4a9056bdb23</cites><orcidid>0000-0001-8279-1229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0015230$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Valls, Clàudia</creatorcontrib><title>Rational limit cycles on generalized Bernouilli polynomial equations</title><title>Journal of mathematical physics</title><description>We determine the maximum number of rational limit cycles of the generalized Bernouilli polynomial equations a(x)dy/dx = A(x)yn + B(x)y, where a(x), A(x), and B(x) are real polynomials with a(x)A(x) ≢ 0, n ≥ 3. In particular, we show that when n = 3, there are equations with six rational limit cycles. We also show that the addressed problem can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then, we approach these equations by applying several tools; in particular, some developed to study extending Fermat problems for polynomial equations.</description><subject>Cycle ratio</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Polynomials</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcYcKUwNffLUusVCoLoOmQyGUlJJ9NkRqhP79iKLgRXZ_P9P-ccAE4RnCHIySWbQYgYJnAPTBCUqhScyX0wgRDjElMpD8FRzssRIUnpBNw8m97H1oQi-JXvC7uxweUitsWba10ywX-4urh2qY2DD8EXXQybNq78mHDrYRvOx-CgMSG7k-85Ba93ty_zh3LxdP84v1qUlmDRl4pXwtYVF5DgSrmaSoKNIQZBVTlJRMMRplxgbCssHGfM0prV1CjIeFVXmEzB2a63S3E9uNzrZRzSuHzWmKoxShXnozrfKZtizsk1ukt-ZdJGI6i_nqSZ_n7SaC92Nlvfb4_5we8x_ULd1c1_-G_zJ58IdOM</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Valls, Clàudia</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8279-1229</orcidid></search><sort><creationdate>20210301</creationdate><title>Rational limit cycles on generalized Bernouilli polynomial equations</title><author>Valls, Clàudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-96b7cdb67032b9ed4832aa3a109be837f61246722cb27e655c4d5d4a9056bdb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cycle ratio</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valls, Clàudia</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valls, Clàudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational limit cycles on generalized Bernouilli polynomial equations</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>62</volume><issue>3</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We determine the maximum number of rational limit cycles of the generalized Bernouilli polynomial equations a(x)dy/dx = A(x)yn + B(x)y, where a(x), A(x), and B(x) are real polynomials with a(x)A(x) ≢ 0, n ≥ 3. In particular, we show that when n = 3, there are equations with six rational limit cycles. We also show that the addressed problem can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then, we approach these equations by applying several tools; in particular, some developed to study extending Fermat problems for polynomial equations.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0015230</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8279-1229</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-03, Vol.62 (3)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_5_0015230
source AIP Journals Complete; Alma/SFX Local Collection
subjects Cycle ratio
Mathematical analysis
Physics
Polynomials
title Rational limit cycles on generalized Bernouilli polynomial equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20limit%20cycles%20on%20generalized%20Bernouilli%20polynomial%20equations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Valls,%20Cl%C3%A0udia&rft.date=2021-03-01&rft.volume=62&rft.issue=3&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0015230&rft_dat=%3Cproquest_cross%3E2494674966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494674966&rft_id=info:pmid/&rfr_iscdi=true