Issues in growing Heusler compounds in thin films for spintronic applications

Heusler magnetic alloys offer a wide variety of electronic properties very promising for spintronics and magnonics. Some alloys exhibit a spin gap in their band structure at the Fermi energy, the so-called half-metal magnetic (HMM) behavior. This particular property leads to two very interesting pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-12, Vol.128 (24)
Hauptverfasser: Guillemard, C., Petit-Watelot, S., Devolder, T., Pasquier, L., Boulet, P., Migot, S., Ghanbaja, J., Bertran, F., Andrieu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 128
creator Guillemard, C.
Petit-Watelot, S.
Devolder, T.
Pasquier, L.
Boulet, P.
Migot, S.
Ghanbaja, J.
Bertran, F.
Andrieu, S.
description Heusler magnetic alloys offer a wide variety of electronic properties very promising for spintronics and magnonics. Some alloys exhibit a spin gap in their band structure at the Fermi energy, the so-called half-metal magnetic (HMM) behavior. This particular property leads to two very interesting properties for spintronics, i.e., fully polarized current together with ultra-low magnetic damping, two key points for spin-transfer-torque based devices. This Tutorial gives experimental details to grow and characterize Heusler Co2MnZ compounds in thin films (Z = Al, Si, Ga, Ge, Sn, Sb) by using molecular beam epitaxy in order to get the proper predicted electronic properties. A first part of this Tutorial is dedicated to control the stoichiometry as best as possible with some methods to test it. The chemical ordering within the lattice was examined by using electron diffraction during growth, regular x-ray diffraction, and scanning transmission electron microscopy. In particular, standard x-ray diffraction is carefully analyzed depending on the chemical ordering in the cubic cell and shown to be inefficient to distinguish several possible phases, on the contrary to electron microscopy. The electronic properties, i.e., magnetic moment, spin polarization, and magnetic damping were reviewed and discussed according to the stoichiometry of the films and also theoretical predictions. Polycrystalline films were also analyzed, and we show that the peculiar HMM properties are not destroyed, a good news for applications. A clear correlation between the spin polarization and the magnetic damping is experimentally demonstrated. At least, our study highlights the major role of stoichiometry on the expected properties.
doi_str_mv 10.1063/5.0014241
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0014241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473866775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-3409129ec2a03bc6e70e4bbf63b4eda8e4ab6329481060b6072db2b20247f25b3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_8GCJ4Wtk49Ndo-lqC1UvOg5JLvZNmW7WZPdiv_etBV79zIDMw8P8w5CtxgmGDh9zCYAmBGGz9AIQ16kIsvgHI0ACE7zQhSX6CqETYRwTosRel2EMJiQ2DZZefdl21UyN0NojE9Kt-3c0FaHZb-OpbbNNiS180nobNt719oyUV3X2FL11rXhGl3Uqgnm5reP0cfz0_tsni7fXhaz6TItGSd9ShkUmBSmJAqoLrkRYJjWNaeamUrlhinNKSlYHjOB5iBIpYkmQJioSabpGN0fvWvVyM7brfLf0ikr59Ol3M-AAWcCsx2O7N2R7bz7jFF7uXGDb-N5MupozrkQ2clYeheCN_WfFoPcf1Zm8vezkX04sqG0_SH4_-Cd8ydQdlVNfwDuTIWS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473866775</pqid></control><display><type>article</type><title>Issues in growing Heusler compounds in thin films for spintronic applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Guillemard, C. ; Petit-Watelot, S. ; Devolder, T. ; Pasquier, L. ; Boulet, P. ; Migot, S. ; Ghanbaja, J. ; Bertran, F. ; Andrieu, S.</creator><creatorcontrib>Guillemard, C. ; Petit-Watelot, S. ; Devolder, T. ; Pasquier, L. ; Boulet, P. ; Migot, S. ; Ghanbaja, J. ; Bertran, F. ; Andrieu, S.</creatorcontrib><description>Heusler magnetic alloys offer a wide variety of electronic properties very promising for spintronics and magnonics. Some alloys exhibit a spin gap in their band structure at the Fermi energy, the so-called half-metal magnetic (HMM) behavior. This particular property leads to two very interesting properties for spintronics, i.e., fully polarized current together with ultra-low magnetic damping, two key points for spin-transfer-torque based devices. This Tutorial gives experimental details to grow and characterize Heusler Co2MnZ compounds in thin films (Z = Al, Si, Ga, Ge, Sn, Sb) by using molecular beam epitaxy in order to get the proper predicted electronic properties. A first part of this Tutorial is dedicated to control the stoichiometry as best as possible with some methods to test it. The chemical ordering within the lattice was examined by using electron diffraction during growth, regular x-ray diffraction, and scanning transmission electron microscopy. In particular, standard x-ray diffraction is carefully analyzed depending on the chemical ordering in the cubic cell and shown to be inefficient to distinguish several possible phases, on the contrary to electron microscopy. The electronic properties, i.e., magnetic moment, spin polarization, and magnetic damping were reviewed and discussed according to the stoichiometry of the films and also theoretical predictions. Polycrystalline films were also analyzed, and we show that the peculiar HMM properties are not destroyed, a good news for applications. A clear correlation between the spin polarization and the magnetic damping is experimentally demonstrated. At least, our study highlights the major role of stoichiometry on the expected properties.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0014241</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Antimony ; Applied physics ; Condensed Matter ; Electron diffraction ; Electrons ; Germanium ; Magnetic alloys ; Magnetic damping ; Magnetic moments ; Magnetic properties ; Materials Science ; Microscopy ; Molecular beam epitaxy ; Physics ; Polarization (spin alignment) ; Scanning transmission electron microscopy ; Silicon ; Spintronics ; Stoichiometry ; Thin films ; Tin ; X-ray diffraction</subject><ispartof>Journal of applied physics, 2020-12, Vol.128 (24)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-3409129ec2a03bc6e70e4bbf63b4eda8e4ab6329481060b6072db2b20247f25b3</citedby><cites>FETCH-LOGICAL-c462t-3409129ec2a03bc6e70e4bbf63b4eda8e4ab6329481060b6072db2b20247f25b3</cites><orcidid>0000-0001-7998-0993 ; 0000-0002-0697-8929 ; 0000-0003-0684-4397 ; 0000-0002-2416-0514 ; 0000-0002-3347-0047 ; 0000-0003-0373-8193 ; 0000-0003-2870-0570 ; 0000-0003-3803-9931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0014241$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4509,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04064714$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillemard, C.</creatorcontrib><creatorcontrib>Petit-Watelot, S.</creatorcontrib><creatorcontrib>Devolder, T.</creatorcontrib><creatorcontrib>Pasquier, L.</creatorcontrib><creatorcontrib>Boulet, P.</creatorcontrib><creatorcontrib>Migot, S.</creatorcontrib><creatorcontrib>Ghanbaja, J.</creatorcontrib><creatorcontrib>Bertran, F.</creatorcontrib><creatorcontrib>Andrieu, S.</creatorcontrib><title>Issues in growing Heusler compounds in thin films for spintronic applications</title><title>Journal of applied physics</title><description>Heusler magnetic alloys offer a wide variety of electronic properties very promising for spintronics and magnonics. Some alloys exhibit a spin gap in their band structure at the Fermi energy, the so-called half-metal magnetic (HMM) behavior. This particular property leads to two very interesting properties for spintronics, i.e., fully polarized current together with ultra-low magnetic damping, two key points for spin-transfer-torque based devices. This Tutorial gives experimental details to grow and characterize Heusler Co2MnZ compounds in thin films (Z = Al, Si, Ga, Ge, Sn, Sb) by using molecular beam epitaxy in order to get the proper predicted electronic properties. A first part of this Tutorial is dedicated to control the stoichiometry as best as possible with some methods to test it. The chemical ordering within the lattice was examined by using electron diffraction during growth, regular x-ray diffraction, and scanning transmission electron microscopy. In particular, standard x-ray diffraction is carefully analyzed depending on the chemical ordering in the cubic cell and shown to be inefficient to distinguish several possible phases, on the contrary to electron microscopy. The electronic properties, i.e., magnetic moment, spin polarization, and magnetic damping were reviewed and discussed according to the stoichiometry of the films and also theoretical predictions. Polycrystalline films were also analyzed, and we show that the peculiar HMM properties are not destroyed, a good news for applications. A clear correlation between the spin polarization and the magnetic damping is experimentally demonstrated. At least, our study highlights the major role of stoichiometry on the expected properties.</description><subject>Aluminum</subject><subject>Antimony</subject><subject>Applied physics</subject><subject>Condensed Matter</subject><subject>Electron diffraction</subject><subject>Electrons</subject><subject>Germanium</subject><subject>Magnetic alloys</subject><subject>Magnetic damping</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Molecular beam epitaxy</subject><subject>Physics</subject><subject>Polarization (spin alignment)</subject><subject>Scanning transmission electron microscopy</subject><subject>Silicon</subject><subject>Spintronics</subject><subject>Stoichiometry</subject><subject>Thin films</subject><subject>Tin</subject><subject>X-ray diffraction</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_8GCJ4Wtk49Ndo-lqC1UvOg5JLvZNmW7WZPdiv_etBV79zIDMw8P8w5CtxgmGDh9zCYAmBGGz9AIQ16kIsvgHI0ACE7zQhSX6CqETYRwTosRel2EMJiQ2DZZefdl21UyN0NojE9Kt-3c0FaHZb-OpbbNNiS180nobNt719oyUV3X2FL11rXhGl3Uqgnm5reP0cfz0_tsni7fXhaz6TItGSd9ShkUmBSmJAqoLrkRYJjWNaeamUrlhinNKSlYHjOB5iBIpYkmQJioSabpGN0fvWvVyM7brfLf0ikr59Ol3M-AAWcCsx2O7N2R7bz7jFF7uXGDb-N5MupozrkQ2clYeheCN_WfFoPcf1Zm8vezkX04sqG0_SH4_-Cd8ydQdlVNfwDuTIWS</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Guillemard, C.</creator><creator>Petit-Watelot, S.</creator><creator>Devolder, T.</creator><creator>Pasquier, L.</creator><creator>Boulet, P.</creator><creator>Migot, S.</creator><creator>Ghanbaja, J.</creator><creator>Bertran, F.</creator><creator>Andrieu, S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7998-0993</orcidid><orcidid>https://orcid.org/0000-0002-0697-8929</orcidid><orcidid>https://orcid.org/0000-0003-0684-4397</orcidid><orcidid>https://orcid.org/0000-0002-2416-0514</orcidid><orcidid>https://orcid.org/0000-0002-3347-0047</orcidid><orcidid>https://orcid.org/0000-0003-0373-8193</orcidid><orcidid>https://orcid.org/0000-0003-2870-0570</orcidid><orcidid>https://orcid.org/0000-0003-3803-9931</orcidid></search><sort><creationdate>20201228</creationdate><title>Issues in growing Heusler compounds in thin films for spintronic applications</title><author>Guillemard, C. ; Petit-Watelot, S. ; Devolder, T. ; Pasquier, L. ; Boulet, P. ; Migot, S. ; Ghanbaja, J. ; Bertran, F. ; Andrieu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-3409129ec2a03bc6e70e4bbf63b4eda8e4ab6329481060b6072db2b20247f25b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Antimony</topic><topic>Applied physics</topic><topic>Condensed Matter</topic><topic>Electron diffraction</topic><topic>Electrons</topic><topic>Germanium</topic><topic>Magnetic alloys</topic><topic>Magnetic damping</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Molecular beam epitaxy</topic><topic>Physics</topic><topic>Polarization (spin alignment)</topic><topic>Scanning transmission electron microscopy</topic><topic>Silicon</topic><topic>Spintronics</topic><topic>Stoichiometry</topic><topic>Thin films</topic><topic>Tin</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillemard, C.</creatorcontrib><creatorcontrib>Petit-Watelot, S.</creatorcontrib><creatorcontrib>Devolder, T.</creatorcontrib><creatorcontrib>Pasquier, L.</creatorcontrib><creatorcontrib>Boulet, P.</creatorcontrib><creatorcontrib>Migot, S.</creatorcontrib><creatorcontrib>Ghanbaja, J.</creatorcontrib><creatorcontrib>Bertran, F.</creatorcontrib><creatorcontrib>Andrieu, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillemard, C.</au><au>Petit-Watelot, S.</au><au>Devolder, T.</au><au>Pasquier, L.</au><au>Boulet, P.</au><au>Migot, S.</au><au>Ghanbaja, J.</au><au>Bertran, F.</au><au>Andrieu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Issues in growing Heusler compounds in thin films for spintronic applications</atitle><jtitle>Journal of applied physics</jtitle><date>2020-12-28</date><risdate>2020</risdate><volume>128</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Heusler magnetic alloys offer a wide variety of electronic properties very promising for spintronics and magnonics. Some alloys exhibit a spin gap in their band structure at the Fermi energy, the so-called half-metal magnetic (HMM) behavior. This particular property leads to two very interesting properties for spintronics, i.e., fully polarized current together with ultra-low magnetic damping, two key points for spin-transfer-torque based devices. This Tutorial gives experimental details to grow and characterize Heusler Co2MnZ compounds in thin films (Z = Al, Si, Ga, Ge, Sn, Sb) by using molecular beam epitaxy in order to get the proper predicted electronic properties. A first part of this Tutorial is dedicated to control the stoichiometry as best as possible with some methods to test it. The chemical ordering within the lattice was examined by using electron diffraction during growth, regular x-ray diffraction, and scanning transmission electron microscopy. In particular, standard x-ray diffraction is carefully analyzed depending on the chemical ordering in the cubic cell and shown to be inefficient to distinguish several possible phases, on the contrary to electron microscopy. The electronic properties, i.e., magnetic moment, spin polarization, and magnetic damping were reviewed and discussed according to the stoichiometry of the films and also theoretical predictions. Polycrystalline films were also analyzed, and we show that the peculiar HMM properties are not destroyed, a good news for applications. A clear correlation between the spin polarization and the magnetic damping is experimentally demonstrated. At least, our study highlights the major role of stoichiometry on the expected properties.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0014241</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7998-0993</orcidid><orcidid>https://orcid.org/0000-0002-0697-8929</orcidid><orcidid>https://orcid.org/0000-0003-0684-4397</orcidid><orcidid>https://orcid.org/0000-0002-2416-0514</orcidid><orcidid>https://orcid.org/0000-0002-3347-0047</orcidid><orcidid>https://orcid.org/0000-0003-0373-8193</orcidid><orcidid>https://orcid.org/0000-0003-2870-0570</orcidid><orcidid>https://orcid.org/0000-0003-3803-9931</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-12, Vol.128 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0014241
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum
Antimony
Applied physics
Condensed Matter
Electron diffraction
Electrons
Germanium
Magnetic alloys
Magnetic damping
Magnetic moments
Magnetic properties
Materials Science
Microscopy
Molecular beam epitaxy
Physics
Polarization (spin alignment)
Scanning transmission electron microscopy
Silicon
Spintronics
Stoichiometry
Thin films
Tin
X-ray diffraction
title Issues in growing Heusler compounds in thin films for spintronic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Issues%20in%20growing%20Heusler%20compounds%20in%20thin%20films%20for%20spintronic%20applications&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Guillemard,%20C.&rft.date=2020-12-28&rft.volume=128&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0014241&rft_dat=%3Cproquest_cross%3E2473866775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473866775&rft_id=info:pmid/&rfr_iscdi=true