Three-omega thermal-conductivity measurements with curved heater geometries

The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-08, Vol.117 (7)
Hauptverfasser: Jaffe, Gabriel R., Smith, Keenan J., Brar, Victor W., Lagally, Max G., Eriksson, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 117
creator Jaffe, Gabriel R.
Smith, Keenan J.
Brar, Victor W.
Lagally, Max G.
Eriksson, Mark A.
description The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of the wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of an ∼65 nm SiO2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of the thermal penetration depth to wire radius of curvature.
doi_str_mv 10.1063/5.0011627
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0011627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435317366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-8c14d6bf3a1c1bd80c9bb22ec9e8c10a1119e1fe75eeb9fd803efe27ae2231d93</originalsourceid><addsrcrecordid>eNp90M1LwzAUAPAgCs7pwf-g6EmhmpesaXuU4RcOvMxzSNPXNWNtZpJO9t-bsaEHwdPj8X7vg0fIJdA7oILfZ3eUAgiWH5ER0DxPOUBxTEaUUp6KMoNTcub9MqYZ43xE3uatQ0xthwuVhBZdp1aptn096GA2JmyTDpUfHHbYB598mdAmenAbrJMWVUCXLDA2B2fQn5OTRq08XhzimHw8Pc6nL-ns_fl1-jBLNS_KkBYaJrWoGq5AQ1UXVJdVxRjqEmOJKgAoERrMM8SqbCLg2CDLFTLGoS75mFzt51ofjPTaBNRtvLlHHSSISQEii-h6j9bOfg7og1zawfXxLskmPOOQcyGiutkr7az3Dhu5dqZTbiuByt1DZSYPD432dm93G1Uwtv_BG-t-oVzXzX_47-RvXl-EvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435317366</pqid></control><display><type>article</type><title>Three-omega thermal-conductivity measurements with curved heater geometries</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jaffe, Gabriel R. ; Smith, Keenan J. ; Brar, Victor W. ; Lagally, Max G. ; Eriksson, Mark A.</creator><creatorcontrib>Jaffe, Gabriel R. ; Smith, Keenan J. ; Brar, Victor W. ; Lagally, Max G. ; Eriksson, Mark A.</creatorcontrib><description>The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of the wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of an ∼65 nm SiO2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of the thermal penetration depth to wire radius of curvature.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0011627</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Heat conductivity ; Heat transfer ; Heating ; Lower bounds ; Penetration depth ; Radius of curvature ; Silicon dioxide ; Silicon substrates ; Thermal conductivity ; Thermal measurement ; Thermal resistance ; Thermometers ; Thick films ; Two dimensional materials ; Wire</subject><ispartof>Applied physics letters, 2020-08, Vol.117 (7)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-8c14d6bf3a1c1bd80c9bb22ec9e8c10a1119e1fe75eeb9fd803efe27ae2231d93</citedby><cites>FETCH-LOGICAL-c389t-8c14d6bf3a1c1bd80c9bb22ec9e8c10a1119e1fe75eeb9fd803efe27ae2231d93</cites><orcidid>0000-0003-2672-0375 ; 0000-0002-3130-9735 ; 0000000231309735 ; 0000000326720375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0011627$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1648165$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaffe, Gabriel R.</creatorcontrib><creatorcontrib>Smith, Keenan J.</creatorcontrib><creatorcontrib>Brar, Victor W.</creatorcontrib><creatorcontrib>Lagally, Max G.</creatorcontrib><creatorcontrib>Eriksson, Mark A.</creatorcontrib><title>Three-omega thermal-conductivity measurements with curved heater geometries</title><title>Applied physics letters</title><description>The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of the wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of an ∼65 nm SiO2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of the thermal penetration depth to wire radius of curvature.</description><subject>Applied physics</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Lower bounds</subject><subject>Penetration depth</subject><subject>Radius of curvature</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Thermal conductivity</subject><subject>Thermal measurement</subject><subject>Thermal resistance</subject><subject>Thermometers</subject><subject>Thick films</subject><subject>Two dimensional materials</subject><subject>Wire</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1LwzAUAPAgCs7pwf-g6EmhmpesaXuU4RcOvMxzSNPXNWNtZpJO9t-bsaEHwdPj8X7vg0fIJdA7oILfZ3eUAgiWH5ER0DxPOUBxTEaUUp6KMoNTcub9MqYZ43xE3uatQ0xthwuVhBZdp1aptn096GA2JmyTDpUfHHbYB598mdAmenAbrJMWVUCXLDA2B2fQn5OTRq08XhzimHw8Pc6nL-ns_fl1-jBLNS_KkBYaJrWoGq5AQ1UXVJdVxRjqEmOJKgAoERrMM8SqbCLg2CDLFTLGoS75mFzt51ofjPTaBNRtvLlHHSSISQEii-h6j9bOfg7og1zawfXxLskmPOOQcyGiutkr7az3Dhu5dqZTbiuByt1DZSYPD432dm93G1Uwtv_BG-t-oVzXzX_47-RvXl-EvQ</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Jaffe, Gabriel R.</creator><creator>Smith, Keenan J.</creator><creator>Brar, Victor W.</creator><creator>Lagally, Max G.</creator><creator>Eriksson, Mark A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2672-0375</orcidid><orcidid>https://orcid.org/0000-0002-3130-9735</orcidid><orcidid>https://orcid.org/0000000231309735</orcidid><orcidid>https://orcid.org/0000000326720375</orcidid></search><sort><creationdate>20200817</creationdate><title>Three-omega thermal-conductivity measurements with curved heater geometries</title><author>Jaffe, Gabriel R. ; Smith, Keenan J. ; Brar, Victor W. ; Lagally, Max G. ; Eriksson, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-8c14d6bf3a1c1bd80c9bb22ec9e8c10a1119e1fe75eeb9fd803efe27ae2231d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Lower bounds</topic><topic>Penetration depth</topic><topic>Radius of curvature</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Thermal conductivity</topic><topic>Thermal measurement</topic><topic>Thermal resistance</topic><topic>Thermometers</topic><topic>Thick films</topic><topic>Two dimensional materials</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaffe, Gabriel R.</creatorcontrib><creatorcontrib>Smith, Keenan J.</creatorcontrib><creatorcontrib>Brar, Victor W.</creatorcontrib><creatorcontrib>Lagally, Max G.</creatorcontrib><creatorcontrib>Eriksson, Mark A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaffe, Gabriel R.</au><au>Smith, Keenan J.</au><au>Brar, Victor W.</au><au>Lagally, Max G.</au><au>Eriksson, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-omega thermal-conductivity measurements with curved heater geometries</atitle><jtitle>Applied physics letters</jtitle><date>2020-08-17</date><risdate>2020</risdate><volume>117</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of the wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of an ∼65 nm SiO2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of the thermal penetration depth to wire radius of curvature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0011627</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2672-0375</orcidid><orcidid>https://orcid.org/0000-0002-3130-9735</orcidid><orcidid>https://orcid.org/0000000231309735</orcidid><orcidid>https://orcid.org/0000000326720375</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-08, Vol.117 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0011627
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Heat conductivity
Heat transfer
Heating
Lower bounds
Penetration depth
Radius of curvature
Silicon dioxide
Silicon substrates
Thermal conductivity
Thermal measurement
Thermal resistance
Thermometers
Thick films
Two dimensional materials
Wire
title Three-omega thermal-conductivity measurements with curved heater geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-omega%20thermal-conductivity%20measurements%20with%20curved%20heater%20geometries&rft.jtitle=Applied%20physics%20letters&rft.au=Jaffe,%20Gabriel%20R.&rft.date=2020-08-17&rft.volume=117&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0011627&rft_dat=%3Cproquest_cross%3E2435317366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435317366&rft_id=info:pmid/&rfr_iscdi=true