Three-omega thermal-conductivity measurements with curved heater geometries
The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimen...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-08, Vol.117 (7) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Jaffe, Gabriel R. Smith, Keenan J. Brar, Victor W. Lagally, Max G. Eriksson, Mark A. |
description | The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of the wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of an ∼65 nm SiO2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of the thermal penetration depth to wire radius of curvature. |
doi_str_mv | 10.1063/5.0011627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0011627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435317366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-8c14d6bf3a1c1bd80c9bb22ec9e8c10a1119e1fe75eeb9fd803efe27ae2231d93</originalsourceid><addsrcrecordid>eNp90M1LwzAUAPAgCs7pwf-g6EmhmpesaXuU4RcOvMxzSNPXNWNtZpJO9t-bsaEHwdPj8X7vg0fIJdA7oILfZ3eUAgiWH5ER0DxPOUBxTEaUUp6KMoNTcub9MqYZ43xE3uatQ0xthwuVhBZdp1aptn096GA2JmyTDpUfHHbYB598mdAmenAbrJMWVUCXLDA2B2fQn5OTRq08XhzimHw8Pc6nL-ns_fl1-jBLNS_KkBYaJrWoGq5AQ1UXVJdVxRjqEmOJKgAoERrMM8SqbCLg2CDLFTLGoS75mFzt51ofjPTaBNRtvLlHHSSISQEii-h6j9bOfg7og1zawfXxLskmPOOQcyGiutkr7az3Dhu5dqZTbiuByt1DZSYPD432dm93G1Uwtv_BG-t-oVzXzX_47-RvXl-EvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435317366</pqid></control><display><type>article</type><title>Three-omega thermal-conductivity measurements with curved heater geometries</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jaffe, Gabriel R. ; Smith, Keenan J. ; Brar, Victor W. ; Lagally, Max G. ; Eriksson, Mark A.</creator><creatorcontrib>Jaffe, Gabriel R. ; Smith, Keenan J. ; Brar, Victor W. ; Lagally, Max G. ; Eriksson, Mark A.</creatorcontrib><description>The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of the wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of an ∼65 nm SiO2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of the thermal penetration depth to wire radius of curvature.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0011627</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Heat conductivity ; Heat transfer ; Heating ; Lower bounds ; Penetration depth ; Radius of curvature ; Silicon dioxide ; Silicon substrates ; Thermal conductivity ; Thermal measurement ; Thermal resistance ; Thermometers ; Thick films ; Two dimensional materials ; Wire</subject><ispartof>Applied physics letters, 2020-08, Vol.117 (7)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-8c14d6bf3a1c1bd80c9bb22ec9e8c10a1119e1fe75eeb9fd803efe27ae2231d93</citedby><cites>FETCH-LOGICAL-c389t-8c14d6bf3a1c1bd80c9bb22ec9e8c10a1119e1fe75eeb9fd803efe27ae2231d93</cites><orcidid>0000-0003-2672-0375 ; 0000-0002-3130-9735 ; 0000000231309735 ; 0000000326720375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0011627$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1648165$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaffe, Gabriel R.</creatorcontrib><creatorcontrib>Smith, Keenan J.</creatorcontrib><creatorcontrib>Brar, Victor W.</creatorcontrib><creatorcontrib>Lagally, Max G.</creatorcontrib><creatorcontrib>Eriksson, Mark A.</creatorcontrib><title>Three-omega thermal-conductivity measurements with curved heater geometries</title><title>Applied physics letters</title><description>The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of the wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of an ∼65 nm SiO2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of the thermal penetration depth to wire radius of curvature.</description><subject>Applied physics</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Lower bounds</subject><subject>Penetration depth</subject><subject>Radius of curvature</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Thermal conductivity</subject><subject>Thermal measurement</subject><subject>Thermal resistance</subject><subject>Thermometers</subject><subject>Thick films</subject><subject>Two dimensional materials</subject><subject>Wire</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M1LwzAUAPAgCs7pwf-g6EmhmpesaXuU4RcOvMxzSNPXNWNtZpJO9t-bsaEHwdPj8X7vg0fIJdA7oILfZ3eUAgiWH5ER0DxPOUBxTEaUUp6KMoNTcub9MqYZ43xE3uatQ0xthwuVhBZdp1aptn096GA2JmyTDpUfHHbYB598mdAmenAbrJMWVUCXLDA2B2fQn5OTRq08XhzimHw8Pc6nL-ns_fl1-jBLNS_KkBYaJrWoGq5AQ1UXVJdVxRjqEmOJKgAoERrMM8SqbCLg2CDLFTLGoS75mFzt51ofjPTaBNRtvLlHHSSISQEii-h6j9bOfg7og1zawfXxLskmPOOQcyGiutkr7az3Dhu5dqZTbiuByt1DZSYPD432dm93G1Uwtv_BG-t-oVzXzX_47-RvXl-EvQ</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Jaffe, Gabriel R.</creator><creator>Smith, Keenan J.</creator><creator>Brar, Victor W.</creator><creator>Lagally, Max G.</creator><creator>Eriksson, Mark A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2672-0375</orcidid><orcidid>https://orcid.org/0000-0002-3130-9735</orcidid><orcidid>https://orcid.org/0000000231309735</orcidid><orcidid>https://orcid.org/0000000326720375</orcidid></search><sort><creationdate>20200817</creationdate><title>Three-omega thermal-conductivity measurements with curved heater geometries</title><author>Jaffe, Gabriel R. ; Smith, Keenan J. ; Brar, Victor W. ; Lagally, Max G. ; Eriksson, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-8c14d6bf3a1c1bd80c9bb22ec9e8c10a1119e1fe75eeb9fd803efe27ae2231d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Lower bounds</topic><topic>Penetration depth</topic><topic>Radius of curvature</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Thermal conductivity</topic><topic>Thermal measurement</topic><topic>Thermal resistance</topic><topic>Thermometers</topic><topic>Thick films</topic><topic>Two dimensional materials</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaffe, Gabriel R.</creatorcontrib><creatorcontrib>Smith, Keenan J.</creatorcontrib><creatorcontrib>Brar, Victor W.</creatorcontrib><creatorcontrib>Lagally, Max G.</creatorcontrib><creatorcontrib>Eriksson, Mark A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaffe, Gabriel R.</au><au>Smith, Keenan J.</au><au>Brar, Victor W.</au><au>Lagally, Max G.</au><au>Eriksson, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-omega thermal-conductivity measurements with curved heater geometries</atitle><jtitle>Applied physics letters</jtitle><date>2020-08-17</date><risdate>2020</risdate><volume>117</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of the wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of an ∼65 nm SiO2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of the thermal penetration depth to wire radius of curvature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0011627</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2672-0375</orcidid><orcidid>https://orcid.org/0000-0002-3130-9735</orcidid><orcidid>https://orcid.org/0000000231309735</orcidid><orcidid>https://orcid.org/0000000326720375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-08, Vol.117 (7) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0011627 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Heat conductivity Heat transfer Heating Lower bounds Penetration depth Radius of curvature Silicon dioxide Silicon substrates Thermal conductivity Thermal measurement Thermal resistance Thermometers Thick films Two dimensional materials Wire |
title | Three-omega thermal-conductivity measurements with curved heater geometries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-omega%20thermal-conductivity%20measurements%20with%20curved%20heater%20geometries&rft.jtitle=Applied%20physics%20letters&rft.au=Jaffe,%20Gabriel%20R.&rft.date=2020-08-17&rft.volume=117&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0011627&rft_dat=%3Cproquest_cross%3E2435317366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435317366&rft_id=info:pmid/&rfr_iscdi=true |