The complex structural mechanisms behind strain curves in bismuth sodium titanate–barium titanate

In this work, the lead-free composition (1-x)Bi0.5Na0.5TiO3–xBaTiO3 (BNT–BT) with x = 0.12 was investigated using in situ Synchrotron x-ray powder diffraction. With the applied electric field, the pseudo-cubic relaxor phase reversibly transforms to a ferroelectric state. The reversibility is still p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-05, Vol.116 (18)
Hauptverfasser: Lee, Kai-Yang, Shi, Xi, Kumar, Nitish, Hoffman, Mark, Etter, Martin, Winter, Jens, Lemos da Silva, Lucas, Seifert, Daniela, Hinterstein, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Applied physics letters
container_volume 116
creator Lee, Kai-Yang
Shi, Xi
Kumar, Nitish
Hoffman, Mark
Etter, Martin
Winter, Jens
Lemos da Silva, Lucas
Seifert, Daniela
Hinterstein, Manuel
description In this work, the lead-free composition (1-x)Bi0.5Na0.5TiO3–xBaTiO3 (BNT–BT) with x = 0.12 was investigated using in situ Synchrotron x-ray powder diffraction. With the applied electric field, the pseudo-cubic relaxor phase reversibly transforms to a ferroelectric state. The reversibility is still preserved after 104 bipolar electric field cycles. A Rietveld refinement with a structure, strain, and texture analysis using a model based on the atomic scale was applied for four frequencies from 10−4 to 101 Hz. The analysis allowed us to separately determine the two coexisting phases, their electric field dependent evolution, and the underlying strain mechanisms. For all the applied frequencies, we showed that domain switching is the only strain mechanism appearing in the tetragonal phase and the lattice strain is the only mechanism in the rhombohedral phase. The coercive field of the tetragonal phase (4 kV/mm) is found to be higher than that of the rhombohedral phase (3 kV/mm). This divergence has not been observed in previously investigated lead-containing materials and cannot be detected solely using macroscopic strain and polarization experiments. Moreover, the domain strain abruptly starts to occur only after a threshold field value and exhibits high hysteresis. The lattice strain, on the other hand, starts nearly from the beginning and increases more linearly during the bipolar field cycle. It could, therefore, be demonstrated that complex structural mechanisms underlie the apparent clear and continuous macroscopic strain curve. These findings are crucial for all actuator materials undergoing a relaxor to ferroelectric phase transformation and provide approaches and strategies to optimize lead-free materials for tailored applications.
doi_str_mv 10.1063/5.0005401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0005401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397913533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6d0751f5b4d294b921eace526474ceb1a5adc446c1d735d47bf998cb481862233</originalsourceid><addsrcrecordid>eNqdkMtKw0AUhgdRsFYXvsGAK4XUuSdZSvEGBTd1PcwtJKW5ODMpuvMdfEOfxAkt6NrVOfz_xzn8PwCXGC0wEvSWLxBCnCF8BGYY5XlGMS6OwSypNBMlx6fgLITNBBFKZ8CsawdN3w5b9w5D9KOJo1db2DpTq64JbYDa1U1nJ1M1HTSj37kA06aTO8Yaht42YwtjE1Wnovv-_NLK_1XOwUmltsFdHOYcvD7cr5dP2erl8Xl5t8oMFSRmwqKc44prZknJdEmwU8ZxIljOjNNYcWUNY8Jgm1NuWa6rsiyMZgUuBElp5uBqf3fw_dvoQpSbfvRdeikJLfMSU04n6npPGd-H4F0lB9-0yn9IjOTUoeTy0GFib_ZsMClLbPruf_Cu97-gHGxFfwBuJoGp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397913533</pqid></control><display><type>article</type><title>The complex structural mechanisms behind strain curves in bismuth sodium titanate–barium titanate</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lee, Kai-Yang ; Shi, Xi ; Kumar, Nitish ; Hoffman, Mark ; Etter, Martin ; Winter, Jens ; Lemos da Silva, Lucas ; Seifert, Daniela ; Hinterstein, Manuel</creator><creatorcontrib>Lee, Kai-Yang ; Shi, Xi ; Kumar, Nitish ; Hoffman, Mark ; Etter, Martin ; Winter, Jens ; Lemos da Silva, Lucas ; Seifert, Daniela ; Hinterstein, Manuel</creatorcontrib><description>In this work, the lead-free composition (1-x)Bi0.5Na0.5TiO3–xBaTiO3 (BNT–BT) with x = 0.12 was investigated using in situ Synchrotron x-ray powder diffraction. With the applied electric field, the pseudo-cubic relaxor phase reversibly transforms to a ferroelectric state. The reversibility is still preserved after 104 bipolar electric field cycles. A Rietveld refinement with a structure, strain, and texture analysis using a model based on the atomic scale was applied for four frequencies from 10−4 to 101 Hz. The analysis allowed us to separately determine the two coexisting phases, their electric field dependent evolution, and the underlying strain mechanisms. For all the applied frequencies, we showed that domain switching is the only strain mechanism appearing in the tetragonal phase and the lattice strain is the only mechanism in the rhombohedral phase. The coercive field of the tetragonal phase (4 kV/mm) is found to be higher than that of the rhombohedral phase (3 kV/mm). This divergence has not been observed in previously investigated lead-containing materials and cannot be detected solely using macroscopic strain and polarization experiments. Moreover, the domain strain abruptly starts to occur only after a threshold field value and exhibits high hysteresis. The lattice strain, on the other hand, starts nearly from the beginning and increases more linearly during the bipolar field cycle. It could, therefore, be demonstrated that complex structural mechanisms underlie the apparent clear and continuous macroscopic strain curve. These findings are crucial for all actuator materials undergoing a relaxor to ferroelectric phase transformation and provide approaches and strategies to optimize lead-free materials for tailored applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0005401</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuator materials ; Applied physics ; Barium titanates ; Bismuth titanate ; Coercivity ; Domains ; Electric fields ; Ferroelectric materials ; Ferroelectricity ; Lattice strain ; Lead free ; Phase transitions ; Relaxors ; Sodium titanate ; Strain analysis ; Synchrotron radiation ; X ray powder diffraction</subject><ispartof>Applied physics letters, 2020-05, Vol.116 (18)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-6d0751f5b4d294b921eace526474ceb1a5adc446c1d735d47bf998cb481862233</citedby><cites>FETCH-LOGICAL-c362t-6d0751f5b4d294b921eace526474ceb1a5adc446c1d735d47bf998cb481862233</cites><orcidid>0000-0003-4650-7547 ; 0000-0002-5183-3585 ; 0000-0003-3766-0953 ; 0000-0002-5055-5843 ; 0000-0003-2927-1165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0005401$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Lee, Kai-Yang</creatorcontrib><creatorcontrib>Shi, Xi</creatorcontrib><creatorcontrib>Kumar, Nitish</creatorcontrib><creatorcontrib>Hoffman, Mark</creatorcontrib><creatorcontrib>Etter, Martin</creatorcontrib><creatorcontrib>Winter, Jens</creatorcontrib><creatorcontrib>Lemos da Silva, Lucas</creatorcontrib><creatorcontrib>Seifert, Daniela</creatorcontrib><creatorcontrib>Hinterstein, Manuel</creatorcontrib><title>The complex structural mechanisms behind strain curves in bismuth sodium titanate–barium titanate</title><title>Applied physics letters</title><description>In this work, the lead-free composition (1-x)Bi0.5Na0.5TiO3–xBaTiO3 (BNT–BT) with x = 0.12 was investigated using in situ Synchrotron x-ray powder diffraction. With the applied electric field, the pseudo-cubic relaxor phase reversibly transforms to a ferroelectric state. The reversibility is still preserved after 104 bipolar electric field cycles. A Rietveld refinement with a structure, strain, and texture analysis using a model based on the atomic scale was applied for four frequencies from 10−4 to 101 Hz. The analysis allowed us to separately determine the two coexisting phases, their electric field dependent evolution, and the underlying strain mechanisms. For all the applied frequencies, we showed that domain switching is the only strain mechanism appearing in the tetragonal phase and the lattice strain is the only mechanism in the rhombohedral phase. The coercive field of the tetragonal phase (4 kV/mm) is found to be higher than that of the rhombohedral phase (3 kV/mm). This divergence has not been observed in previously investigated lead-containing materials and cannot be detected solely using macroscopic strain and polarization experiments. Moreover, the domain strain abruptly starts to occur only after a threshold field value and exhibits high hysteresis. The lattice strain, on the other hand, starts nearly from the beginning and increases more linearly during the bipolar field cycle. It could, therefore, be demonstrated that complex structural mechanisms underlie the apparent clear and continuous macroscopic strain curve. These findings are crucial for all actuator materials undergoing a relaxor to ferroelectric phase transformation and provide approaches and strategies to optimize lead-free materials for tailored applications.</description><subject>Actuator materials</subject><subject>Applied physics</subject><subject>Barium titanates</subject><subject>Bismuth titanate</subject><subject>Coercivity</subject><subject>Domains</subject><subject>Electric fields</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Lattice strain</subject><subject>Lead free</subject><subject>Phase transitions</subject><subject>Relaxors</subject><subject>Sodium titanate</subject><subject>Strain analysis</subject><subject>Synchrotron radiation</subject><subject>X ray powder diffraction</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkMtKw0AUhgdRsFYXvsGAK4XUuSdZSvEGBTd1PcwtJKW5ODMpuvMdfEOfxAkt6NrVOfz_xzn8PwCXGC0wEvSWLxBCnCF8BGYY5XlGMS6OwSypNBMlx6fgLITNBBFKZ8CsawdN3w5b9w5D9KOJo1db2DpTq64JbYDa1U1nJ1M1HTSj37kA06aTO8Yaht42YwtjE1Wnovv-_NLK_1XOwUmltsFdHOYcvD7cr5dP2erl8Xl5t8oMFSRmwqKc44prZknJdEmwU8ZxIljOjNNYcWUNY8Jgm1NuWa6rsiyMZgUuBElp5uBqf3fw_dvoQpSbfvRdeikJLfMSU04n6npPGd-H4F0lB9-0yn9IjOTUoeTy0GFib_ZsMClLbPruf_Cu97-gHGxFfwBuJoGp</recordid><startdate>20200504</startdate><enddate>20200504</enddate><creator>Lee, Kai-Yang</creator><creator>Shi, Xi</creator><creator>Kumar, Nitish</creator><creator>Hoffman, Mark</creator><creator>Etter, Martin</creator><creator>Winter, Jens</creator><creator>Lemos da Silva, Lucas</creator><creator>Seifert, Daniela</creator><creator>Hinterstein, Manuel</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4650-7547</orcidid><orcidid>https://orcid.org/0000-0002-5183-3585</orcidid><orcidid>https://orcid.org/0000-0003-3766-0953</orcidid><orcidid>https://orcid.org/0000-0002-5055-5843</orcidid><orcidid>https://orcid.org/0000-0003-2927-1165</orcidid></search><sort><creationdate>20200504</creationdate><title>The complex structural mechanisms behind strain curves in bismuth sodium titanate–barium titanate</title><author>Lee, Kai-Yang ; Shi, Xi ; Kumar, Nitish ; Hoffman, Mark ; Etter, Martin ; Winter, Jens ; Lemos da Silva, Lucas ; Seifert, Daniela ; Hinterstein, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6d0751f5b4d294b921eace526474ceb1a5adc446c1d735d47bf998cb481862233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuator materials</topic><topic>Applied physics</topic><topic>Barium titanates</topic><topic>Bismuth titanate</topic><topic>Coercivity</topic><topic>Domains</topic><topic>Electric fields</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Lattice strain</topic><topic>Lead free</topic><topic>Phase transitions</topic><topic>Relaxors</topic><topic>Sodium titanate</topic><topic>Strain analysis</topic><topic>Synchrotron radiation</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kai-Yang</creatorcontrib><creatorcontrib>Shi, Xi</creatorcontrib><creatorcontrib>Kumar, Nitish</creatorcontrib><creatorcontrib>Hoffman, Mark</creatorcontrib><creatorcontrib>Etter, Martin</creatorcontrib><creatorcontrib>Winter, Jens</creatorcontrib><creatorcontrib>Lemos da Silva, Lucas</creatorcontrib><creatorcontrib>Seifert, Daniela</creatorcontrib><creatorcontrib>Hinterstein, Manuel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kai-Yang</au><au>Shi, Xi</au><au>Kumar, Nitish</au><au>Hoffman, Mark</au><au>Etter, Martin</au><au>Winter, Jens</au><au>Lemos da Silva, Lucas</au><au>Seifert, Daniela</au><au>Hinterstein, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The complex structural mechanisms behind strain curves in bismuth sodium titanate–barium titanate</atitle><jtitle>Applied physics letters</jtitle><date>2020-05-04</date><risdate>2020</risdate><volume>116</volume><issue>18</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this work, the lead-free composition (1-x)Bi0.5Na0.5TiO3–xBaTiO3 (BNT–BT) with x = 0.12 was investigated using in situ Synchrotron x-ray powder diffraction. With the applied electric field, the pseudo-cubic relaxor phase reversibly transforms to a ferroelectric state. The reversibility is still preserved after 104 bipolar electric field cycles. A Rietveld refinement with a structure, strain, and texture analysis using a model based on the atomic scale was applied for four frequencies from 10−4 to 101 Hz. The analysis allowed us to separately determine the two coexisting phases, their electric field dependent evolution, and the underlying strain mechanisms. For all the applied frequencies, we showed that domain switching is the only strain mechanism appearing in the tetragonal phase and the lattice strain is the only mechanism in the rhombohedral phase. The coercive field of the tetragonal phase (4 kV/mm) is found to be higher than that of the rhombohedral phase (3 kV/mm). This divergence has not been observed in previously investigated lead-containing materials and cannot be detected solely using macroscopic strain and polarization experiments. Moreover, the domain strain abruptly starts to occur only after a threshold field value and exhibits high hysteresis. The lattice strain, on the other hand, starts nearly from the beginning and increases more linearly during the bipolar field cycle. It could, therefore, be demonstrated that complex structural mechanisms underlie the apparent clear and continuous macroscopic strain curve. These findings are crucial for all actuator materials undergoing a relaxor to ferroelectric phase transformation and provide approaches and strategies to optimize lead-free materials for tailored applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0005401</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4650-7547</orcidid><orcidid>https://orcid.org/0000-0002-5183-3585</orcidid><orcidid>https://orcid.org/0000-0003-3766-0953</orcidid><orcidid>https://orcid.org/0000-0002-5055-5843</orcidid><orcidid>https://orcid.org/0000-0003-2927-1165</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-05, Vol.116 (18)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0005401
source AIP Journals Complete; Alma/SFX Local Collection
subjects Actuator materials
Applied physics
Barium titanates
Bismuth titanate
Coercivity
Domains
Electric fields
Ferroelectric materials
Ferroelectricity
Lattice strain
Lead free
Phase transitions
Relaxors
Sodium titanate
Strain analysis
Synchrotron radiation
X ray powder diffraction
title The complex structural mechanisms behind strain curves in bismuth sodium titanate–barium titanate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20complex%20structural%20mechanisms%20behind%20strain%20curves%20in%20bismuth%20sodium%20titanate%E2%80%93barium%20titanate&rft.jtitle=Applied%20physics%20letters&rft.au=Lee,%20Kai-Yang&rft.date=2020-05-04&rft.volume=116&rft.issue=18&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0005401&rft_dat=%3Cproquest_cross%3E2397913533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397913533&rft_id=info:pmid/&rfr_iscdi=true