An accurate and transferable machine learning potential for carbon
We present an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the Gaussian approximation potential (GAP) methodology. The potential, named GAP-20, describes the properties of the bulk crystalline and amorphous phases, crystal surfaces, and defect structure...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-07, Vol.153 (3), p.034702 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 034702 |
container_title | The Journal of chemical physics |
container_volume | 153 |
creator | Rowe, Patrick Deringer, Volker L. Gasparotto, Piero Csányi, Gábor Michaelides, Angelos |
description | We present an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the Gaussian approximation potential (GAP) methodology. The potential, named GAP-20, describes the properties of the bulk crystalline and amorphous phases, crystal surfaces, and defect structures with an accuracy approaching that of direct ab initio simulation, but at a significantly reduced cost. We combine structural databases for amorphous carbon and graphene, which we extend substantially by adding suitable configurations, for example, for defects in graphene and other nanostructures. The final potential is fitted to reference data computed using the optB88-vdW density functional theory (DFT) functional. Dispersion interactions, which are crucial to describe multilayer carbonaceous materials, are therefore implicitly included. We additionally account for long-range dispersion interactions using a semianalytical two-body term and show that an improved model can be obtained through an optimization of the many-body smooth overlap of atomic positions descriptor. We rigorously test the potential on lattice parameters, bond lengths, formation energies, and phonon dispersions of numerous carbon allotropes. We compare the formation energies of an extensive set of defect structures, surfaces, and surface reconstructions to DFT reference calculations. The present work demonstrates the ability to combine, in the same ML model, the previously attained flexibility required for amorphous carbon [V. L. Deringer and G. Csányi, Phys. Rev. B 95, 094203 (2017)] with the high numerical accuracy necessary for crystalline graphene [Rowe et al., Phys. Rev. B 97, 054303 (2018)], thereby providing an interatomic potential that will be applicable to a wide range of applications concerning diverse forms of bulk and nanostructured carbon. |
doi_str_mv | 10.1063/5.0005084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0005084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423901805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-6219a29a29fbaf644aa6e484b003032a38ada9c60bfab830e8bc8a4b243cec373</originalsourceid><addsrcrecordid>eNp90EtLxDAUBeAgijOOLvwDEnCl0PHm0TRd6uALBtzoOtykqXbopDVtBf-9HWbUlcKFu_k4Bw4hpwzmDJS4SucAkIKWe2TKQOdJpnLYJ1MAzpJcgZqQo65bjYhlXB6SieAZUyzNp-TmOlB0bojYe4qhoH3E0JU-oq09XaN7q4KntccYqvBK26b3oa-wpmUTqcNom3BMDkqsO3-y-zPycnf7vHhIlk_3j4vrZeIk032iOMuRb660WCopEZWXWloAAYKj0Fhg7hTYEq0W4LV1GqXlUjjvRCZm5Hyb28bmffBdb1bNEMNYabjkIgemIR3VxVa52HRd9KVpY7XG-GkYmM1aJjW7tUZ7tksc7NoXP_J7nhFcbkHnqh77qgn_pv2JP5r4C01blOILLB5_hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423901805</pqid></control><display><type>article</type><title>An accurate and transferable machine learning potential for carbon</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Rowe, Patrick ; Deringer, Volker L. ; Gasparotto, Piero ; Csányi, Gábor ; Michaelides, Angelos</creator><creatorcontrib>Rowe, Patrick ; Deringer, Volker L. ; Gasparotto, Piero ; Csányi, Gábor ; Michaelides, Angelos</creatorcontrib><description>We present an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the Gaussian approximation potential (GAP) methodology. The potential, named GAP-20, describes the properties of the bulk crystalline and amorphous phases, crystal surfaces, and defect structures with an accuracy approaching that of direct ab initio simulation, but at a significantly reduced cost. We combine structural databases for amorphous carbon and graphene, which we extend substantially by adding suitable configurations, for example, for defects in graphene and other nanostructures. The final potential is fitted to reference data computed using the optB88-vdW density functional theory (DFT) functional. Dispersion interactions, which are crucial to describe multilayer carbonaceous materials, are therefore implicitly included. We additionally account for long-range dispersion interactions using a semianalytical two-body term and show that an improved model can be obtained through an optimization of the many-body smooth overlap of atomic positions descriptor. We rigorously test the potential on lattice parameters, bond lengths, formation energies, and phonon dispersions of numerous carbon allotropes. We compare the formation energies of an extensive set of defect structures, surfaces, and surface reconstructions to DFT reference calculations. The present work demonstrates the ability to combine, in the same ML model, the previously attained flexibility required for amorphous carbon [V. L. Deringer and G. Csányi, Phys. Rev. B 95, 094203 (2017)] with the high numerical accuracy necessary for crystalline graphene [Rowe et al., Phys. Rev. B 97, 054303 (2018)], thereby providing an interatomic potential that will be applicable to a wide range of applications concerning diverse forms of bulk and nanostructured carbon.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0005084</identifier><identifier>PMID: 32716159</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Accuracy ; Allotropy ; Amorphous structure ; Carbon ; Carbonaceous materials ; Computer simulation ; Crystal defects ; Crystal structure ; Crystal surfaces ; Crystallinity ; Density functional theory ; Energy of formation ; Free energy ; Graphene ; Heat of formation ; Lattice parameters ; Machine learning ; Multilayers ; Optimization</subject><ispartof>The Journal of chemical physics, 2020-07, Vol.153 (3), p.034702</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-6219a29a29fbaf644aa6e484b003032a38ada9c60bfab830e8bc8a4b243cec373</citedby><cites>FETCH-LOGICAL-c418t-6219a29a29fbaf644aa6e484b003032a38ada9c60bfab830e8bc8a4b243cec373</cites><orcidid>0000-0003-3897-9181 ; 0000-0002-8180-2034 ; 0000-0001-7671-4825 ; 0000-0001-6873-0278 ; 0000-0002-9169-169X ; 0000000338979181 ; 0000000281802034 ; 000000029169169X ; 0000000176714825 ; 0000000168730278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0005084$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32716159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowe, Patrick</creatorcontrib><creatorcontrib>Deringer, Volker L.</creatorcontrib><creatorcontrib>Gasparotto, Piero</creatorcontrib><creatorcontrib>Csányi, Gábor</creatorcontrib><creatorcontrib>Michaelides, Angelos</creatorcontrib><title>An accurate and transferable machine learning potential for carbon</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the Gaussian approximation potential (GAP) methodology. The potential, named GAP-20, describes the properties of the bulk crystalline and amorphous phases, crystal surfaces, and defect structures with an accuracy approaching that of direct ab initio simulation, but at a significantly reduced cost. We combine structural databases for amorphous carbon and graphene, which we extend substantially by adding suitable configurations, for example, for defects in graphene and other nanostructures. The final potential is fitted to reference data computed using the optB88-vdW density functional theory (DFT) functional. Dispersion interactions, which are crucial to describe multilayer carbonaceous materials, are therefore implicitly included. We additionally account for long-range dispersion interactions using a semianalytical two-body term and show that an improved model can be obtained through an optimization of the many-body smooth overlap of atomic positions descriptor. We rigorously test the potential on lattice parameters, bond lengths, formation energies, and phonon dispersions of numerous carbon allotropes. We compare the formation energies of an extensive set of defect structures, surfaces, and surface reconstructions to DFT reference calculations. The present work demonstrates the ability to combine, in the same ML model, the previously attained flexibility required for amorphous carbon [V. L. Deringer and G. Csányi, Phys. Rev. B 95, 094203 (2017)] with the high numerical accuracy necessary for crystalline graphene [Rowe et al., Phys. Rev. B 97, 054303 (2018)], thereby providing an interatomic potential that will be applicable to a wide range of applications concerning diverse forms of bulk and nanostructured carbon.</description><subject>Accuracy</subject><subject>Allotropy</subject><subject>Amorphous structure</subject><subject>Carbon</subject><subject>Carbonaceous materials</subject><subject>Computer simulation</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystal surfaces</subject><subject>Crystallinity</subject><subject>Density functional theory</subject><subject>Energy of formation</subject><subject>Free energy</subject><subject>Graphene</subject><subject>Heat of formation</subject><subject>Lattice parameters</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Optimization</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAUBeAgijOOLvwDEnCl0PHm0TRd6uALBtzoOtykqXbopDVtBf-9HWbUlcKFu_k4Bw4hpwzmDJS4SucAkIKWe2TKQOdJpnLYJ1MAzpJcgZqQo65bjYhlXB6SieAZUyzNp-TmOlB0bojYe4qhoH3E0JU-oq09XaN7q4KntccYqvBK26b3oa-wpmUTqcNom3BMDkqsO3-y-zPycnf7vHhIlk_3j4vrZeIk032iOMuRb660WCopEZWXWloAAYKj0Fhg7hTYEq0W4LV1GqXlUjjvRCZm5Hyb28bmffBdb1bNEMNYabjkIgemIR3VxVa52HRd9KVpY7XG-GkYmM1aJjW7tUZ7tksc7NoXP_J7nhFcbkHnqh77qgn_pv2JP5r4C01blOILLB5_hQ</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Rowe, Patrick</creator><creator>Deringer, Volker L.</creator><creator>Gasparotto, Piero</creator><creator>Csányi, Gábor</creator><creator>Michaelides, Angelos</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3897-9181</orcidid><orcidid>https://orcid.org/0000-0002-8180-2034</orcidid><orcidid>https://orcid.org/0000-0001-7671-4825</orcidid><orcidid>https://orcid.org/0000-0001-6873-0278</orcidid><orcidid>https://orcid.org/0000-0002-9169-169X</orcidid><orcidid>https://orcid.org/0000000338979181</orcidid><orcidid>https://orcid.org/0000000281802034</orcidid><orcidid>https://orcid.org/000000029169169X</orcidid><orcidid>https://orcid.org/0000000176714825</orcidid><orcidid>https://orcid.org/0000000168730278</orcidid></search><sort><creationdate>20200721</creationdate><title>An accurate and transferable machine learning potential for carbon</title><author>Rowe, Patrick ; Deringer, Volker L. ; Gasparotto, Piero ; Csányi, Gábor ; Michaelides, Angelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-6219a29a29fbaf644aa6e484b003032a38ada9c60bfab830e8bc8a4b243cec373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Allotropy</topic><topic>Amorphous structure</topic><topic>Carbon</topic><topic>Carbonaceous materials</topic><topic>Computer simulation</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystal surfaces</topic><topic>Crystallinity</topic><topic>Density functional theory</topic><topic>Energy of formation</topic><topic>Free energy</topic><topic>Graphene</topic><topic>Heat of formation</topic><topic>Lattice parameters</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowe, Patrick</creatorcontrib><creatorcontrib>Deringer, Volker L.</creatorcontrib><creatorcontrib>Gasparotto, Piero</creatorcontrib><creatorcontrib>Csányi, Gábor</creatorcontrib><creatorcontrib>Michaelides, Angelos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowe, Patrick</au><au>Deringer, Volker L.</au><au>Gasparotto, Piero</au><au>Csányi, Gábor</au><au>Michaelides, Angelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An accurate and transferable machine learning potential for carbon</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>153</volume><issue>3</issue><spage>034702</spage><pages>034702-</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We present an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the Gaussian approximation potential (GAP) methodology. The potential, named GAP-20, describes the properties of the bulk crystalline and amorphous phases, crystal surfaces, and defect structures with an accuracy approaching that of direct ab initio simulation, but at a significantly reduced cost. We combine structural databases for amorphous carbon and graphene, which we extend substantially by adding suitable configurations, for example, for defects in graphene and other nanostructures. The final potential is fitted to reference data computed using the optB88-vdW density functional theory (DFT) functional. Dispersion interactions, which are crucial to describe multilayer carbonaceous materials, are therefore implicitly included. We additionally account for long-range dispersion interactions using a semianalytical two-body term and show that an improved model can be obtained through an optimization of the many-body smooth overlap of atomic positions descriptor. We rigorously test the potential on lattice parameters, bond lengths, formation energies, and phonon dispersions of numerous carbon allotropes. We compare the formation energies of an extensive set of defect structures, surfaces, and surface reconstructions to DFT reference calculations. The present work demonstrates the ability to combine, in the same ML model, the previously attained flexibility required for amorphous carbon [V. L. Deringer and G. Csányi, Phys. Rev. B 95, 094203 (2017)] with the high numerical accuracy necessary for crystalline graphene [Rowe et al., Phys. Rev. B 97, 054303 (2018)], thereby providing an interatomic potential that will be applicable to a wide range of applications concerning diverse forms of bulk and nanostructured carbon.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32716159</pmid><doi>10.1063/5.0005084</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3897-9181</orcidid><orcidid>https://orcid.org/0000-0002-8180-2034</orcidid><orcidid>https://orcid.org/0000-0001-7671-4825</orcidid><orcidid>https://orcid.org/0000-0001-6873-0278</orcidid><orcidid>https://orcid.org/0000-0002-9169-169X</orcidid><orcidid>https://orcid.org/0000000338979181</orcidid><orcidid>https://orcid.org/0000000281802034</orcidid><orcidid>https://orcid.org/000000029169169X</orcidid><orcidid>https://orcid.org/0000000176714825</orcidid><orcidid>https://orcid.org/0000000168730278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-07, Vol.153 (3), p.034702 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0005084 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Accuracy Allotropy Amorphous structure Carbon Carbonaceous materials Computer simulation Crystal defects Crystal structure Crystal surfaces Crystallinity Density functional theory Energy of formation Free energy Graphene Heat of formation Lattice parameters Machine learning Multilayers Optimization |
title | An accurate and transferable machine learning potential for carbon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20accurate%20and%20transferable%20machine%20learning%20potential%20for%20carbon&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Rowe,%20Patrick&rft.date=2020-07-21&rft.volume=153&rft.issue=3&rft.spage=034702&rft.pages=034702-&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0005084&rft_dat=%3Cproquest_cross%3E2423901805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423901805&rft_id=info:pmid/32716159&rfr_iscdi=true |