Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow
This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-03, Vol.32 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Jbara, Layal M. Giacomin, A. Jeffrey Saengow, Chaimongkol |
description | This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell orientation. Previously, the explicit analytical expressions of the zeroth, second, and fourth harmonics of the alternating first normal stress difference response in LAOS have been derived. In this paper, we correct and extend these expressions by seeking an understanding of the next higher harmonic. Specifically, this paper continues a series of studies that shed light on molecular theory as a useful approach in investigating the response of polymeric liquids to oscillatory shear. Following the general method of Bird and Armstrong [“Time-dependent flows of dilute solutions of rodlike macromolecules,” J. Chem. Phys. 56, 3680 (1972)], we derive the expression of the first normal stress coefficient up to and including the sixth harmonic. Our analysis relies on the extension of the orientation distribution function to the sixth power of the shear rate. Our expression is the only one to have been derived from a molecular theory for a sixth harmonic and thus provides the first glimpse of the molecular origins of a first normal stress difference higher than the fourth. |
doi_str_mv | 10.1063/5.0004859 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0004859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379864001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-5808a72459d561482defb76637e1c17af956731c660cdf2b54b5a3d69448288c3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdlssrtHKX5BQQ96Dmk2sSm7SZ2kSv31pmzBu6d3Dg8zvIPQJSUzSgS75TNCSNXw9ghNKGnaohZCHO_nmhRCMHqKzmJcZ8TaUkzQz6tKyYDHg0mr0GEbAK_cx8rkUDAE73TEwWLrICbsAwyqxzGBiRF3zloDxmuDLYQBD6E3etsrwAGc8UklFzx2HoeoXd-rFGCH48pkYPvwfY5OrOqjuTjkFL0_3L_Nn4rFy-Pz_G5RaCbKVPCGNKouK952XNCqKTtjl7kVqw3VtFa25aJmVAtBdGfLJa-WXLFOtFW2TaPZFF2NezcQPrcmJrkOW_D5pCxZ3TaiIoRmdT0qDSFGMFZuwA0KdpISuX-t5PLw2mxvRpt7jS3_h78C_EG56Sz7BdbNiN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379864001</pqid></control><display><type>article</type><title>Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jbara, Layal M. ; Giacomin, A. Jeffrey ; Saengow, Chaimongkol</creator><creatorcontrib>Jbara, Layal M. ; Giacomin, A. Jeffrey ; Saengow, Chaimongkol</creatorcontrib><description>This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell orientation. Previously, the explicit analytical expressions of the zeroth, second, and fourth harmonics of the alternating first normal stress difference response in LAOS have been derived. In this paper, we correct and extend these expressions by seeking an understanding of the next higher harmonic. Specifically, this paper continues a series of studies that shed light on molecular theory as a useful approach in investigating the response of polymeric liquids to oscillatory shear. Following the general method of Bird and Armstrong [“Time-dependent flows of dilute solutions of rodlike macromolecules,” J. Chem. Phys. 56, 3680 (1972)], we derive the expression of the first normal stress coefficient up to and including the sixth harmonic. Our analysis relies on the extension of the orientation distribution function to the sixth power of the shear rate. Our expression is the only one to have been derived from a molecular theory for a sixth harmonic and thus provides the first glimpse of the molecular origins of a first normal stress difference higher than the fourth.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0004859</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Distribution functions ; Fluid dynamics ; Higher harmonics ; Macromolecules ; Molecular theory ; Orientation ; Pattern method (forecasting) ; Physics ; Shear flow ; Shear rate ; Time dependence</subject><ispartof>Physics of fluids (1994), 2020-03, Vol.32 (3)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-5808a72459d561482defb76637e1c17af956731c660cdf2b54b5a3d69448288c3</citedby><cites>FETCH-LOGICAL-c362t-5808a72459d561482defb76637e1c17af956731c660cdf2b54b5a3d69448288c3</cites><orcidid>0000-0002-3561-0349 ; 0000-0002-3869-5616 ; 0000-0001-7844-3942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Jbara, Layal M.</creatorcontrib><creatorcontrib>Giacomin, A. Jeffrey</creatorcontrib><creatorcontrib>Saengow, Chaimongkol</creatorcontrib><title>Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow</title><title>Physics of fluids (1994)</title><description>This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell orientation. Previously, the explicit analytical expressions of the zeroth, second, and fourth harmonics of the alternating first normal stress difference response in LAOS have been derived. In this paper, we correct and extend these expressions by seeking an understanding of the next higher harmonic. Specifically, this paper continues a series of studies that shed light on molecular theory as a useful approach in investigating the response of polymeric liquids to oscillatory shear. Following the general method of Bird and Armstrong [“Time-dependent flows of dilute solutions of rodlike macromolecules,” J. Chem. Phys. 56, 3680 (1972)], we derive the expression of the first normal stress coefficient up to and including the sixth harmonic. Our analysis relies on the extension of the orientation distribution function to the sixth power of the shear rate. Our expression is the only one to have been derived from a molecular theory for a sixth harmonic and thus provides the first glimpse of the molecular origins of a first normal stress difference higher than the fourth.</description><subject>Distribution functions</subject><subject>Fluid dynamics</subject><subject>Higher harmonics</subject><subject>Macromolecules</subject><subject>Molecular theory</subject><subject>Orientation</subject><subject>Pattern method (forecasting)</subject><subject>Physics</subject><subject>Shear flow</subject><subject>Shear rate</subject><subject>Time dependence</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdlssrtHKX5BQQ96Dmk2sSm7SZ2kSv31pmzBu6d3Dg8zvIPQJSUzSgS75TNCSNXw9ghNKGnaohZCHO_nmhRCMHqKzmJcZ8TaUkzQz6tKyYDHg0mr0GEbAK_cx8rkUDAE73TEwWLrICbsAwyqxzGBiRF3zloDxmuDLYQBD6E3etsrwAGc8UklFzx2HoeoXd-rFGCH48pkYPvwfY5OrOqjuTjkFL0_3L_Nn4rFy-Pz_G5RaCbKVPCGNKouK952XNCqKTtjl7kVqw3VtFa25aJmVAtBdGfLJa-WXLFOtFW2TaPZFF2NezcQPrcmJrkOW_D5pCxZ3TaiIoRmdT0qDSFGMFZuwA0KdpISuX-t5PLw2mxvRpt7jS3_h78C_EG56Sz7BdbNiN8</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Jbara, Layal M.</creator><creator>Giacomin, A. Jeffrey</creator><creator>Saengow, Chaimongkol</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3561-0349</orcidid><orcidid>https://orcid.org/0000-0002-3869-5616</orcidid><orcidid>https://orcid.org/0000-0001-7844-3942</orcidid></search><sort><creationdate>20200301</creationdate><title>Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow</title><author>Jbara, Layal M. ; Giacomin, A. Jeffrey ; Saengow, Chaimongkol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-5808a72459d561482defb76637e1c17af956731c660cdf2b54b5a3d69448288c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Distribution functions</topic><topic>Fluid dynamics</topic><topic>Higher harmonics</topic><topic>Macromolecules</topic><topic>Molecular theory</topic><topic>Orientation</topic><topic>Pattern method (forecasting)</topic><topic>Physics</topic><topic>Shear flow</topic><topic>Shear rate</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jbara, Layal M.</creatorcontrib><creatorcontrib>Giacomin, A. Jeffrey</creatorcontrib><creatorcontrib>Saengow, Chaimongkol</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jbara, Layal M.</au><au>Giacomin, A. Jeffrey</au><au>Saengow, Chaimongkol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell orientation. Previously, the explicit analytical expressions of the zeroth, second, and fourth harmonics of the alternating first normal stress difference response in LAOS have been derived. In this paper, we correct and extend these expressions by seeking an understanding of the next higher harmonic. Specifically, this paper continues a series of studies that shed light on molecular theory as a useful approach in investigating the response of polymeric liquids to oscillatory shear. Following the general method of Bird and Armstrong [“Time-dependent flows of dilute solutions of rodlike macromolecules,” J. Chem. Phys. 56, 3680 (1972)], we derive the expression of the first normal stress coefficient up to and including the sixth harmonic. Our analysis relies on the extension of the orientation distribution function to the sixth power of the shear rate. Our expression is the only one to have been derived from a molecular theory for a sixth harmonic and thus provides the first glimpse of the molecular origins of a first normal stress difference higher than the fourth.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0004859</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3561-0349</orcidid><orcidid>https://orcid.org/0000-0002-3869-5616</orcidid><orcidid>https://orcid.org/0000-0001-7844-3942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-03, Vol.32 (3) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0004859 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Distribution functions Fluid dynamics Higher harmonics Macromolecules Molecular theory Orientation Pattern method (forecasting) Physics Shear flow Shear rate Time dependence |
title | Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20method%20for%20higher%20harmonics%20of%20first%20normal%20stress%20difference%20from%20molecular%20orientation%20in%20oscillatory%20shear%20flow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Jbara,%20Layal%20M.&rft.date=2020-03-01&rft.volume=32&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0004859&rft_dat=%3Cproquest_cross%3E2379864001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379864001&rft_id=info:pmid/&rfr_iscdi=true |