Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow

This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2020-03, Vol.32 (3)
Hauptverfasser: Jbara, Layal M., Giacomin, A. Jeffrey, Saengow, Chaimongkol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Jbara, Layal M.
Giacomin, A. Jeffrey
Saengow, Chaimongkol
description This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell orientation. Previously, the explicit analytical expressions of the zeroth, second, and fourth harmonics of the alternating first normal stress difference response in LAOS have been derived. In this paper, we correct and extend these expressions by seeking an understanding of the next higher harmonic. Specifically, this paper continues a series of studies that shed light on molecular theory as a useful approach in investigating the response of polymeric liquids to oscillatory shear. Following the general method of Bird and Armstrong [“Time-dependent flows of dilute solutions of rodlike macromolecules,” J. Chem. Phys. 56, 3680 (1972)], we derive the expression of the first normal stress coefficient up to and including the sixth harmonic. Our analysis relies on the extension of the orientation distribution function to the sixth power of the shear rate. Our expression is the only one to have been derived from a molecular theory for a sixth harmonic and thus provides the first glimpse of the molecular origins of a first normal stress difference higher than the fourth.
doi_str_mv 10.1063/5.0004859
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0004859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379864001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-5808a72459d561482defb76637e1c17af956731c660cdf2b54b5a3d69448288c3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdlssrtHKX5BQQ96Dmk2sSm7SZ2kSv31pmzBu6d3Dg8zvIPQJSUzSgS75TNCSNXw9ghNKGnaohZCHO_nmhRCMHqKzmJcZ8TaUkzQz6tKyYDHg0mr0GEbAK_cx8rkUDAE73TEwWLrICbsAwyqxzGBiRF3zloDxmuDLYQBD6E3etsrwAGc8UklFzx2HoeoXd-rFGCH48pkYPvwfY5OrOqjuTjkFL0_3L_Nn4rFy-Pz_G5RaCbKVPCGNKouK952XNCqKTtjl7kVqw3VtFa25aJmVAtBdGfLJa-WXLFOtFW2TaPZFF2NezcQPrcmJrkOW_D5pCxZ3TaiIoRmdT0qDSFGMFZuwA0KdpISuX-t5PLw2mxvRpt7jS3_h78C_EG56Sz7BdbNiN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379864001</pqid></control><display><type>article</type><title>Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jbara, Layal M. ; Giacomin, A. Jeffrey ; Saengow, Chaimongkol</creator><creatorcontrib>Jbara, Layal M. ; Giacomin, A. Jeffrey ; Saengow, Chaimongkol</creatorcontrib><description>This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell orientation. Previously, the explicit analytical expressions of the zeroth, second, and fourth harmonics of the alternating first normal stress difference response in LAOS have been derived. In this paper, we correct and extend these expressions by seeking an understanding of the next higher harmonic. Specifically, this paper continues a series of studies that shed light on molecular theory as a useful approach in investigating the response of polymeric liquids to oscillatory shear. Following the general method of Bird and Armstrong [“Time-dependent flows of dilute solutions of rodlike macromolecules,” J. Chem. Phys. 56, 3680 (1972)], we derive the expression of the first normal stress coefficient up to and including the sixth harmonic. Our analysis relies on the extension of the orientation distribution function to the sixth power of the shear rate. Our expression is the only one to have been derived from a molecular theory for a sixth harmonic and thus provides the first glimpse of the molecular origins of a first normal stress difference higher than the fourth.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0004859</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Distribution functions ; Fluid dynamics ; Higher harmonics ; Macromolecules ; Molecular theory ; Orientation ; Pattern method (forecasting) ; Physics ; Shear flow ; Shear rate ; Time dependence</subject><ispartof>Physics of fluids (1994), 2020-03, Vol.32 (3)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-5808a72459d561482defb76637e1c17af956731c660cdf2b54b5a3d69448288c3</citedby><cites>FETCH-LOGICAL-c362t-5808a72459d561482defb76637e1c17af956731c660cdf2b54b5a3d69448288c3</cites><orcidid>0000-0002-3561-0349 ; 0000-0002-3869-5616 ; 0000-0001-7844-3942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Jbara, Layal M.</creatorcontrib><creatorcontrib>Giacomin, A. Jeffrey</creatorcontrib><creatorcontrib>Saengow, Chaimongkol</creatorcontrib><title>Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow</title><title>Physics of fluids (1994)</title><description>This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell orientation. Previously, the explicit analytical expressions of the zeroth, second, and fourth harmonics of the alternating first normal stress difference response in LAOS have been derived. In this paper, we correct and extend these expressions by seeking an understanding of the next higher harmonic. Specifically, this paper continues a series of studies that shed light on molecular theory as a useful approach in investigating the response of polymeric liquids to oscillatory shear. Following the general method of Bird and Armstrong [“Time-dependent flows of dilute solutions of rodlike macromolecules,” J. Chem. Phys. 56, 3680 (1972)], we derive the expression of the first normal stress coefficient up to and including the sixth harmonic. Our analysis relies on the extension of the orientation distribution function to the sixth power of the shear rate. Our expression is the only one to have been derived from a molecular theory for a sixth harmonic and thus provides the first glimpse of the molecular origins of a first normal stress difference higher than the fourth.</description><subject>Distribution functions</subject><subject>Fluid dynamics</subject><subject>Higher harmonics</subject><subject>Macromolecules</subject><subject>Molecular theory</subject><subject>Orientation</subject><subject>Pattern method (forecasting)</subject><subject>Physics</subject><subject>Shear flow</subject><subject>Shear rate</subject><subject>Time dependence</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdlssrtHKX5BQQ96Dmk2sSm7SZ2kSv31pmzBu6d3Dg8zvIPQJSUzSgS75TNCSNXw9ghNKGnaohZCHO_nmhRCMHqKzmJcZ8TaUkzQz6tKyYDHg0mr0GEbAK_cx8rkUDAE73TEwWLrICbsAwyqxzGBiRF3zloDxmuDLYQBD6E3etsrwAGc8UklFzx2HoeoXd-rFGCH48pkYPvwfY5OrOqjuTjkFL0_3L_Nn4rFy-Pz_G5RaCbKVPCGNKouK952XNCqKTtjl7kVqw3VtFa25aJmVAtBdGfLJa-WXLFOtFW2TaPZFF2NezcQPrcmJrkOW_D5pCxZ3TaiIoRmdT0qDSFGMFZuwA0KdpISuX-t5PLw2mxvRpt7jS3_h78C_EG56Sz7BdbNiN8</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Jbara, Layal M.</creator><creator>Giacomin, A. Jeffrey</creator><creator>Saengow, Chaimongkol</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3561-0349</orcidid><orcidid>https://orcid.org/0000-0002-3869-5616</orcidid><orcidid>https://orcid.org/0000-0001-7844-3942</orcidid></search><sort><creationdate>20200301</creationdate><title>Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow</title><author>Jbara, Layal M. ; Giacomin, A. Jeffrey ; Saengow, Chaimongkol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-5808a72459d561482defb76637e1c17af956731c660cdf2b54b5a3d69448288c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Distribution functions</topic><topic>Fluid dynamics</topic><topic>Higher harmonics</topic><topic>Macromolecules</topic><topic>Molecular theory</topic><topic>Orientation</topic><topic>Pattern method (forecasting)</topic><topic>Physics</topic><topic>Shear flow</topic><topic>Shear rate</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jbara, Layal M.</creatorcontrib><creatorcontrib>Giacomin, A. Jeffrey</creatorcontrib><creatorcontrib>Saengow, Chaimongkol</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jbara, Layal M.</au><au>Giacomin, A. Jeffrey</au><au>Saengow, Chaimongkol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: rigid dumbbells suspended in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell orientation. Previously, the explicit analytical expressions of the zeroth, second, and fourth harmonics of the alternating first normal stress difference response in LAOS have been derived. In this paper, we correct and extend these expressions by seeking an understanding of the next higher harmonic. Specifically, this paper continues a series of studies that shed light on molecular theory as a useful approach in investigating the response of polymeric liquids to oscillatory shear. Following the general method of Bird and Armstrong [“Time-dependent flows of dilute solutions of rodlike macromolecules,” J. Chem. Phys. 56, 3680 (1972)], we derive the expression of the first normal stress coefficient up to and including the sixth harmonic. Our analysis relies on the extension of the orientation distribution function to the sixth power of the shear rate. Our expression is the only one to have been derived from a molecular theory for a sixth harmonic and thus provides the first glimpse of the molecular origins of a first normal stress difference higher than the fourth.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0004859</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3561-0349</orcidid><orcidid>https://orcid.org/0000-0002-3869-5616</orcidid><orcidid>https://orcid.org/0000-0001-7844-3942</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-03, Vol.32 (3)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0004859
source AIP Journals Complete; Alma/SFX Local Collection
subjects Distribution functions
Fluid dynamics
Higher harmonics
Macromolecules
Molecular theory
Orientation
Pattern method (forecasting)
Physics
Shear flow
Shear rate
Time dependence
title Pattern method for higher harmonics of first normal stress difference from molecular orientation in oscillatory shear flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20method%20for%20higher%20harmonics%20of%20first%20normal%20stress%20difference%20from%20molecular%20orientation%20in%20oscillatory%20shear%20flow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Jbara,%20Layal%20M.&rft.date=2020-03-01&rft.volume=32&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0004859&rft_dat=%3Cproquest_cross%3E2379864001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379864001&rft_id=info:pmid/&rfr_iscdi=true