A machine learning based deep potential for seeking the low-lying candidates of Al clusters
A Machine-Learning based Deep Potential (DP) model for Al clusters is developed through training with an extended database including ab initio data of both bulk and several clusters in only 6 CPU/h. This DP model has good performance in accurately predicting the low-lying candidates of Al clusters i...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-03, Vol.152 (11), p.114105-114105, Article 114105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114105 |
---|---|
container_issue | 11 |
container_start_page | 114105 |
container_title | The Journal of chemical physics |
container_volume | 152 |
creator | Tuo, P. Ye, X. B. Pan, B. C. |
description | A Machine-Learning based Deep Potential (DP) model for Al clusters is developed through training with an extended database including ab initio data of both bulk and several clusters in only 6 CPU/h. This DP model has good performance in accurately predicting the low-lying candidates of Al clusters in a broad size range. Based on our developed DP model, the low-lying structures of 101 different sized Al clusters are extensively searched, among which the lowest-energy candidates of 69 sized clusters are updated. Our calculations demonstrate that machine-learning is indeed powerful in generating potentials to describe the interaction of atoms in complex materials. |
doi_str_mv | 10.1063/5.0001491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0001491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381848943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-b0d1055411dfcc101ab62605864e64e3c0839fffc6f5e8152cbac39a7c4c15323</originalsourceid><addsrcrecordid>eNqN0E1r3DAQBmBRWppt2kP_QBH00g-cjixLlo_L0o9AIJf01IOR5VHj1Cu5kpyQf18Zb7fQQCkIhMQzLzNDyEsGZwwk_yDOAIBVDXtENgxUU9SygcdkA1CyopEgT8izGG8WVJfVU3LCS9Y0FRcb8m1L99pcDw7piDq4wX2nnY7Y0x5xopNP6NKgR2p9oBHxxwLSddb-rhjvl5fRrh96nTBSb-l2pGacY8IQn5MnVo8RXxzuU_L108er3Zfi4vLz-W57URiueCo66BkIUTHWW2MYMN3JUoJQssJ8uAHFG2utkVagYqI0nTa80bWpDBO85KfkzZo7Bf9zxpja_RANjqN26OfYllwxVak8cKav_6I3fg4ud5dVXYuqqWFRb1dlgo8xoG2nMOx1uG8ZtMvGW9EeNp7tq0Pi3O2xP8rfK87g_QrusPM2mgGdwSPLMaJkXAKHJTFr9f96NySdBu92fnYpl75bS3PV-n-su_XhT8vt1Nt_4Ycz_gLYy7YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377549703</pqid></control><display><type>article</type><title>A machine learning based deep potential for seeking the low-lying candidates of Al clusters</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Tuo, P. ; Ye, X. B. ; Pan, B. C.</creator><creatorcontrib>Tuo, P. ; Ye, X. B. ; Pan, B. C.</creatorcontrib><description>A Machine-Learning based Deep Potential (DP) model for Al clusters is developed through training with an extended database including ab initio data of both bulk and several clusters in only 6 CPU/h. This DP model has good performance in accurately predicting the low-lying candidates of Al clusters in a broad size range. Based on our developed DP model, the low-lying structures of 101 different sized Al clusters are extensively searched, among which the lowest-energy candidates of 69 sized clusters are updated. Our calculations demonstrate that machine-learning is indeed powerful in generating potentials to describe the interaction of atoms in complex materials.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0001491</identifier><identifier>PMID: 32199435</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Chemistry ; Chemistry, Physical ; Clusters ; Machine learning ; Performance prediction ; Physical Sciences ; Physics ; Physics, Atomic, Molecular & Chemical ; Science & Technology</subject><ispartof>The Journal of chemical physics, 2020-03, Vol.152 (11), p.114105-114105, Article 114105</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>8</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000521360300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c383t-b0d1055411dfcc101ab62605864e64e3c0839fffc6f5e8152cbac39a7c4c15323</citedby><cites>FETCH-LOGICAL-c383t-b0d1055411dfcc101ab62605864e64e3c0839fffc6f5e8152cbac39a7c4c15323</cites><orcidid>0000-0002-6477-5900 ; 0000-0002-5128-7860 ; 0000000251287860 ; 0000000264775900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0001491$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,782,786,796,4516,27933,27934,28257,76394</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32199435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuo, P.</creatorcontrib><creatorcontrib>Ye, X. B.</creatorcontrib><creatorcontrib>Pan, B. C.</creatorcontrib><title>A machine learning based deep potential for seeking the low-lying candidates of Al clusters</title><title>The Journal of chemical physics</title><addtitle>J CHEM PHYS</addtitle><addtitle>J Chem Phys</addtitle><description>A Machine-Learning based Deep Potential (DP) model for Al clusters is developed through training with an extended database including ab initio data of both bulk and several clusters in only 6 CPU/h. This DP model has good performance in accurately predicting the low-lying candidates of Al clusters in a broad size range. Based on our developed DP model, the low-lying structures of 101 different sized Al clusters are extensively searched, among which the lowest-energy candidates of 69 sized clusters are updated. Our calculations demonstrate that machine-learning is indeed powerful in generating potentials to describe the interaction of atoms in complex materials.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Clusters</subject><subject>Machine learning</subject><subject>Performance prediction</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular & Chemical</subject><subject>Science & Technology</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqN0E1r3DAQBmBRWppt2kP_QBH00g-cjixLlo_L0o9AIJf01IOR5VHj1Cu5kpyQf18Zb7fQQCkIhMQzLzNDyEsGZwwk_yDOAIBVDXtENgxUU9SygcdkA1CyopEgT8izGG8WVJfVU3LCS9Y0FRcb8m1L99pcDw7piDq4wX2nnY7Y0x5xopNP6NKgR2p9oBHxxwLSddb-rhjvl5fRrh96nTBSb-l2pGacY8IQn5MnVo8RXxzuU_L108er3Zfi4vLz-W57URiueCo66BkIUTHWW2MYMN3JUoJQssJ8uAHFG2utkVagYqI0nTa80bWpDBO85KfkzZo7Bf9zxpja_RANjqN26OfYllwxVak8cKav_6I3fg4ud5dVXYuqqWFRb1dlgo8xoG2nMOx1uG8ZtMvGW9EeNp7tq0Pi3O2xP8rfK87g_QrusPM2mgGdwSPLMaJkXAKHJTFr9f96NySdBu92fnYpl75bS3PV-n-su_XhT8vt1Nt_4Ycz_gLYy7YQ</recordid><startdate>20200321</startdate><enddate>20200321</enddate><creator>Tuo, P.</creator><creator>Ye, X. B.</creator><creator>Pan, B. C.</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6477-5900</orcidid><orcidid>https://orcid.org/0000-0002-5128-7860</orcidid><orcidid>https://orcid.org/0000000251287860</orcidid><orcidid>https://orcid.org/0000000264775900</orcidid></search><sort><creationdate>20200321</creationdate><title>A machine learning based deep potential for seeking the low-lying candidates of Al clusters</title><author>Tuo, P. ; Ye, X. B. ; Pan, B. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-b0d1055411dfcc101ab62605864e64e3c0839fffc6f5e8152cbac39a7c4c15323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Clusters</topic><topic>Machine learning</topic><topic>Performance prediction</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular & Chemical</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuo, P.</creatorcontrib><creatorcontrib>Ye, X. B.</creatorcontrib><creatorcontrib>Pan, B. C.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuo, P.</au><au>Ye, X. B.</au><au>Pan, B. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning based deep potential for seeking the low-lying candidates of Al clusters</atitle><jtitle>The Journal of chemical physics</jtitle><stitle>J CHEM PHYS</stitle><addtitle>J Chem Phys</addtitle><date>2020-03-21</date><risdate>2020</risdate><volume>152</volume><issue>11</issue><spage>114105</spage><epage>114105</epage><pages>114105-114105</pages><artnum>114105</artnum><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A Machine-Learning based Deep Potential (DP) model for Al clusters is developed through training with an extended database including ab initio data of both bulk and several clusters in only 6 CPU/h. This DP model has good performance in accurately predicting the low-lying candidates of Al clusters in a broad size range. Based on our developed DP model, the low-lying structures of 101 different sized Al clusters are extensively searched, among which the lowest-energy candidates of 69 sized clusters are updated. Our calculations demonstrate that machine-learning is indeed powerful in generating potentials to describe the interaction of atoms in complex materials.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><pmid>32199435</pmid><doi>10.1063/5.0001491</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6477-5900</orcidid><orcidid>https://orcid.org/0000-0002-5128-7860</orcidid><orcidid>https://orcid.org/0000000251287860</orcidid><orcidid>https://orcid.org/0000000264775900</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-03, Vol.152 (11), p.114105-114105, Article 114105 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0001491 |
source | AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Chemistry Chemistry, Physical Clusters Machine learning Performance prediction Physical Sciences Physics Physics, Atomic, Molecular & Chemical Science & Technology |
title | A machine learning based deep potential for seeking the low-lying candidates of Al clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%20based%20deep%20potential%20for%20seeking%20the%20low-lying%20candidates%20of%20Al%20clusters&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Tuo,%20P.&rft.date=2020-03-21&rft.volume=152&rft.issue=11&rft.spage=114105&rft.epage=114105&rft.pages=114105-114105&rft.artnum=114105&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0001491&rft_dat=%3Cproquest_cross%3E2381848943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377549703&rft_id=info:pmid/32199435&rfr_iscdi=true |