The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow

Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Fluids; (United States) 1988-05, Vol.31 (5), p.978-990
Hauptverfasser: Moore, D. W., Saffman, P. G., Tanveer, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 5
container_start_page 978
container_title Phys. Fluids; (United States)
container_volume 31
creator Moore, D. W.
Saffman, P. G.
Tanveer, S.
description Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations are derived for the shape of the bounding vortex sheet which are solved numerically. Two different formulations are employed to check the results. Previous results by Sadovskii [Appl. Math. Mech. 3 5, 773 (1971)] and Chernyshenko (Royal Aircraft Establishment library translations Report No. 2133, 1983) for specific values of the parameters are confirmed. Only symmetrical solutions are found to exist.
doi_str_mv 10.1063/1.866718
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_866718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_866718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-330666f92115b4c04c41b1508fa2bb222a4566cec9393f252cddf61575206313</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpSPwECzHAkOLzVxI2qPiSKjHQgS1yrrYaSOPKNgX-PWmD2Jhuee493UvIKbAJMC2uYFJonUOxR0YctMhkWRb7ZMSYgKyEHA7JUYxvjHEJUozI63xpKZoWP1qTGt9R72j0K0tvTcKlbX2grvWf8Zpu4YtZ-E18bxq68SHZL2q6BQ0-7VZNS9GHzg4bx-TAmTbak985JvP7u_n0MZs9PzxNb2YZCpmnTAimtXYlB1C1RCZRQg2KFc7wuuacG6m0RoulKIXjiuNi4TSoXPH-WxBjcjbE-piaKmKTLC7Rd53FVCmuc13KHl0MCIOPMVhXrUOzMuG7AlZtW6ugGlrr6flA1yb2tbhgOmzin9dlf1jlPbsc2Pbi7vv_I38AEvZ3nQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow</title><source>Alma/SFX Local Collection</source><creator>Moore, D. W. ; Saffman, P. G. ; Tanveer, S.</creator><creatorcontrib>Moore, D. W. ; Saffman, P. G. ; Tanveer, S. ; Applied Mathematics, California Institute of Technology, Pasadena, California 91125</creatorcontrib><description>Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations are derived for the shape of the bounding vortex sheet which are solved numerically. Two different formulations are employed to check the results. Previous results by Sadovskii [Appl. Math. Mech. 3 5, 773 (1971)] and Chernyshenko (Royal Aircraft Establishment library translations Report No. 2133, 1983) for specific values of the parameters are confirmed. Only symmetrical solutions are found to exist.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.866718</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>640410 - Fluid Physics- General Fluid Dynamics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; EQUATIONS ; Exact sciences and technology ; Fluid dynamics ; FLUID FLOW ; Fundamental areas of phenomenology (including applications) ; IDEAL FLOW ; INCOMPRESSIBLE FLOW ; INTEGRAL EQUATIONS ; LAMINAR FLOW ; MOTION ; NONLINEAR PROBLEMS ; NUMERICAL SOLUTION ; Physics ; ROTATION ; Rotational flow and vorticity ; STEADY-STATE CONDITIONS ; VORTICES</subject><ispartof>Phys. Fluids; (United States), 1988-05, Vol.31 (5), p.978-990</ispartof><rights>American Institute of Physics</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-330666f92115b4c04c41b1508fa2bb222a4566cec9393f252cddf61575206313</citedby><cites>FETCH-LOGICAL-c347t-330666f92115b4c04c41b1508fa2bb222a4566cec9393f252cddf61575206313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6975257$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5267694$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, D. W.</creatorcontrib><creatorcontrib>Saffman, P. G.</creatorcontrib><creatorcontrib>Tanveer, S.</creatorcontrib><creatorcontrib>Applied Mathematics, California Institute of Technology, Pasadena, California 91125</creatorcontrib><title>The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow</title><title>Phys. Fluids; (United States)</title><description>Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations are derived for the shape of the bounding vortex sheet which are solved numerically. Two different formulations are employed to check the results. Previous results by Sadovskii [Appl. Math. Mech. 3 5, 773 (1971)] and Chernyshenko (Royal Aircraft Establishment library translations Report No. 2133, 1983) for specific values of the parameters are confirmed. Only symmetrical solutions are found to exist.</description><subject>640410 - Fluid Physics- General Fluid Dynamics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>FLUID FLOW</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>IDEAL FLOW</subject><subject>INCOMPRESSIBLE FLOW</subject><subject>INTEGRAL EQUATIONS</subject><subject>LAMINAR FLOW</subject><subject>MOTION</subject><subject>NONLINEAR PROBLEMS</subject><subject>NUMERICAL SOLUTION</subject><subject>Physics</subject><subject>ROTATION</subject><subject>Rotational flow and vorticity</subject><subject>STEADY-STATE CONDITIONS</subject><subject>VORTICES</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpSPwECzHAkOLzVxI2qPiSKjHQgS1yrrYaSOPKNgX-PWmD2Jhuee493UvIKbAJMC2uYFJonUOxR0YctMhkWRb7ZMSYgKyEHA7JUYxvjHEJUozI63xpKZoWP1qTGt9R72j0K0tvTcKlbX2grvWf8Zpu4YtZ-E18bxq68SHZL2q6BQ0-7VZNS9GHzg4bx-TAmTbak985JvP7u_n0MZs9PzxNb2YZCpmnTAimtXYlB1C1RCZRQg2KFc7wuuacG6m0RoulKIXjiuNi4TSoXPH-WxBjcjbE-piaKmKTLC7Rd53FVCmuc13KHl0MCIOPMVhXrUOzMuG7AlZtW6ugGlrr6flA1yb2tbhgOmzin9dlf1jlPbsc2Pbi7vv_I38AEvZ3nQ</recordid><startdate>19880501</startdate><enddate>19880501</enddate><creator>Moore, D. W.</creator><creator>Saffman, P. G.</creator><creator>Tanveer, S.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19880501</creationdate><title>The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow</title><author>Moore, D. W. ; Saffman, P. G. ; Tanveer, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-330666f92115b4c04c41b1508fa2bb222a4566cec9393f252cddf61575206313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>640410 - Fluid Physics- General Fluid Dynamics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>FLUID FLOW</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>IDEAL FLOW</topic><topic>INCOMPRESSIBLE FLOW</topic><topic>INTEGRAL EQUATIONS</topic><topic>LAMINAR FLOW</topic><topic>MOTION</topic><topic>NONLINEAR PROBLEMS</topic><topic>NUMERICAL SOLUTION</topic><topic>Physics</topic><topic>ROTATION</topic><topic>Rotational flow and vorticity</topic><topic>STEADY-STATE CONDITIONS</topic><topic>VORTICES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, D. W.</creatorcontrib><creatorcontrib>Saffman, P. G.</creatorcontrib><creatorcontrib>Tanveer, S.</creatorcontrib><creatorcontrib>Applied Mathematics, California Institute of Technology, Pasadena, California 91125</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Fluids; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, D. W.</au><au>Saffman, P. G.</au><au>Tanveer, S.</au><aucorp>Applied Mathematics, California Institute of Technology, Pasadena, California 91125</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow</atitle><jtitle>Phys. Fluids; (United States)</jtitle><date>1988-05-01</date><risdate>1988</risdate><volume>31</volume><issue>5</issue><spage>978</spage><epage>990</epage><pages>978-990</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations are derived for the shape of the bounding vortex sheet which are solved numerically. Two different formulations are employed to check the results. Previous results by Sadovskii [Appl. Math. Mech. 3 5, 773 (1971)] and Chernyshenko (Royal Aircraft Establishment library translations Report No. 2133, 1983) for specific values of the parameters are confirmed. Only symmetrical solutions are found to exist.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.866718</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof Phys. Fluids; (United States), 1988-05, Vol.31 (5), p.978-990
issn 0031-9171
2163-4998
language eng
recordid cdi_crossref_primary_10_1063_1_866718
source Alma/SFX Local Collection
subjects 640410 - Fluid Physics- General Fluid Dynamics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
EQUATIONS
Exact sciences and technology
Fluid dynamics
FLUID FLOW
Fundamental areas of phenomenology (including applications)
IDEAL FLOW
INCOMPRESSIBLE FLOW
INTEGRAL EQUATIONS
LAMINAR FLOW
MOTION
NONLINEAR PROBLEMS
NUMERICAL SOLUTION
Physics
ROTATION
Rotational flow and vorticity
STEADY-STATE CONDITIONS
VORTICES
title The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20calculation%20of%20some%20Batchelor%20flows:%20The%20Sadovskii%20vortex%20and%20rotational%20corner%20flow&rft.jtitle=Phys.%20Fluids;%20(United%20States)&rft.au=Moore,%20D.%20W.&rft.aucorp=Applied%20Mathematics,%20California%20Institute%20of%20Technology,%20Pasadena,%20California%2091125&rft.date=1988-05-01&rft.volume=31&rft.issue=5&rft.spage=978&rft.epage=990&rft.pages=978-990&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.866718&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_866718%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true