The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow
Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations...
Gespeichert in:
Veröffentlicht in: | Phys. Fluids; (United States) 1988-05, Vol.31 (5), p.978-990 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 990 |
---|---|
container_issue | 5 |
container_start_page | 978 |
container_title | Phys. Fluids; (United States) |
container_volume | 31 |
creator | Moore, D. W. Saffman, P. G. Tanveer, S. |
description | Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations are derived for the shape of the bounding vortex sheet which are solved numerically. Two different formulations are employed to check the results. Previous results by Sadovskii [Appl. Math. Mech. 3
5, 773 (1971)] and Chernyshenko (Royal Aircraft Establishment library translations Report No. 2133, 1983) for specific values of the parameters are confirmed. Only symmetrical solutions are found to exist. |
doi_str_mv | 10.1063/1.866718 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_866718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_866718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-330666f92115b4c04c41b1508fa2bb222a4566cec9393f252cddf61575206313</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpSPwECzHAkOLzVxI2qPiSKjHQgS1yrrYaSOPKNgX-PWmD2Jhuee493UvIKbAJMC2uYFJonUOxR0YctMhkWRb7ZMSYgKyEHA7JUYxvjHEJUozI63xpKZoWP1qTGt9R72j0K0tvTcKlbX2grvWf8Zpu4YtZ-E18bxq68SHZL2q6BQ0-7VZNS9GHzg4bx-TAmTbak985JvP7u_n0MZs9PzxNb2YZCpmnTAimtXYlB1C1RCZRQg2KFc7wuuacG6m0RoulKIXjiuNi4TSoXPH-WxBjcjbE-piaKmKTLC7Rd53FVCmuc13KHl0MCIOPMVhXrUOzMuG7AlZtW6ugGlrr6flA1yb2tbhgOmzin9dlf1jlPbsc2Pbi7vv_I38AEvZ3nQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow</title><source>Alma/SFX Local Collection</source><creator>Moore, D. W. ; Saffman, P. G. ; Tanveer, S.</creator><creatorcontrib>Moore, D. W. ; Saffman, P. G. ; Tanveer, S. ; Applied Mathematics, California Institute of Technology, Pasadena, California 91125</creatorcontrib><description>Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations are derived for the shape of the bounding vortex sheet which are solved numerically. Two different formulations are employed to check the results. Previous results by Sadovskii [Appl. Math. Mech. 3
5, 773 (1971)] and Chernyshenko (Royal Aircraft Establishment library translations Report No. 2133, 1983) for specific values of the parameters are confirmed. Only symmetrical solutions are found to exist.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.866718</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>640410 - Fluid Physics- General Fluid Dynamics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; EQUATIONS ; Exact sciences and technology ; Fluid dynamics ; FLUID FLOW ; Fundamental areas of phenomenology (including applications) ; IDEAL FLOW ; INCOMPRESSIBLE FLOW ; INTEGRAL EQUATIONS ; LAMINAR FLOW ; MOTION ; NONLINEAR PROBLEMS ; NUMERICAL SOLUTION ; Physics ; ROTATION ; Rotational flow and vorticity ; STEADY-STATE CONDITIONS ; VORTICES</subject><ispartof>Phys. Fluids; (United States), 1988-05, Vol.31 (5), p.978-990</ispartof><rights>American Institute of Physics</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-330666f92115b4c04c41b1508fa2bb222a4566cec9393f252cddf61575206313</citedby><cites>FETCH-LOGICAL-c347t-330666f92115b4c04c41b1508fa2bb222a4566cec9393f252cddf61575206313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6975257$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5267694$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, D. W.</creatorcontrib><creatorcontrib>Saffman, P. G.</creatorcontrib><creatorcontrib>Tanveer, S.</creatorcontrib><creatorcontrib>Applied Mathematics, California Institute of Technology, Pasadena, California 91125</creatorcontrib><title>The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow</title><title>Phys. Fluids; (United States)</title><description>Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations are derived for the shape of the bounding vortex sheet which are solved numerically. Two different formulations are employed to check the results. Previous results by Sadovskii [Appl. Math. Mech. 3
5, 773 (1971)] and Chernyshenko (Royal Aircraft Establishment library translations Report No. 2133, 1983) for specific values of the parameters are confirmed. Only symmetrical solutions are found to exist.</description><subject>640410 - Fluid Physics- General Fluid Dynamics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>FLUID FLOW</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>IDEAL FLOW</subject><subject>INCOMPRESSIBLE FLOW</subject><subject>INTEGRAL EQUATIONS</subject><subject>LAMINAR FLOW</subject><subject>MOTION</subject><subject>NONLINEAR PROBLEMS</subject><subject>NUMERICAL SOLUTION</subject><subject>Physics</subject><subject>ROTATION</subject><subject>Rotational flow and vorticity</subject><subject>STEADY-STATE CONDITIONS</subject><subject>VORTICES</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpSPwECzHAkOLzVxI2qPiSKjHQgS1yrrYaSOPKNgX-PWmD2Jhuee493UvIKbAJMC2uYFJonUOxR0YctMhkWRb7ZMSYgKyEHA7JUYxvjHEJUozI63xpKZoWP1qTGt9R72j0K0tvTcKlbX2grvWf8Zpu4YtZ-E18bxq68SHZL2q6BQ0-7VZNS9GHzg4bx-TAmTbak985JvP7u_n0MZs9PzxNb2YZCpmnTAimtXYlB1C1RCZRQg2KFc7wuuacG6m0RoulKIXjiuNi4TSoXPH-WxBjcjbE-piaKmKTLC7Rd53FVCmuc13KHl0MCIOPMVhXrUOzMuG7AlZtW6ugGlrr6flA1yb2tbhgOmzin9dlf1jlPbsc2Pbi7vv_I38AEvZ3nQ</recordid><startdate>19880501</startdate><enddate>19880501</enddate><creator>Moore, D. W.</creator><creator>Saffman, P. G.</creator><creator>Tanveer, S.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19880501</creationdate><title>The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow</title><author>Moore, D. W. ; Saffman, P. G. ; Tanveer, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-330666f92115b4c04c41b1508fa2bb222a4566cec9393f252cddf61575206313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>640410 - Fluid Physics- General Fluid Dynamics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>FLUID FLOW</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>IDEAL FLOW</topic><topic>INCOMPRESSIBLE FLOW</topic><topic>INTEGRAL EQUATIONS</topic><topic>LAMINAR FLOW</topic><topic>MOTION</topic><topic>NONLINEAR PROBLEMS</topic><topic>NUMERICAL SOLUTION</topic><topic>Physics</topic><topic>ROTATION</topic><topic>Rotational flow and vorticity</topic><topic>STEADY-STATE CONDITIONS</topic><topic>VORTICES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, D. W.</creatorcontrib><creatorcontrib>Saffman, P. G.</creatorcontrib><creatorcontrib>Tanveer, S.</creatorcontrib><creatorcontrib>Applied Mathematics, California Institute of Technology, Pasadena, California 91125</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Fluids; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, D. W.</au><au>Saffman, P. G.</au><au>Tanveer, S.</au><aucorp>Applied Mathematics, California Institute of Technology, Pasadena, California 91125</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow</atitle><jtitle>Phys. Fluids; (United States)</jtitle><date>1988-05-01</date><risdate>1988</risdate><volume>31</volume><issue>5</issue><spage>978</spage><epage>990</epage><pages>978-990</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Steady, inviscid, incompressible, two‐dimensional flows with vortex patches bounded by vortex sheets (Batchelor flows) are calculated numerically. Two particular cases are considered: the vortex on a plane wall (Sadovskii vortex) and the vortex in a right‐angled corner. Nonlinear integral equations are derived for the shape of the bounding vortex sheet which are solved numerically. Two different formulations are employed to check the results. Previous results by Sadovskii [Appl. Math. Mech. 3
5, 773 (1971)] and Chernyshenko (Royal Aircraft Establishment library translations Report No. 2133, 1983) for specific values of the parameters are confirmed. Only symmetrical solutions are found to exist.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.866718</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9171 |
ispartof | Phys. Fluids; (United States), 1988-05, Vol.31 (5), p.978-990 |
issn | 0031-9171 2163-4998 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_866718 |
source | Alma/SFX Local Collection |
subjects | 640410 - Fluid Physics- General Fluid Dynamics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY EQUATIONS Exact sciences and technology Fluid dynamics FLUID FLOW Fundamental areas of phenomenology (including applications) IDEAL FLOW INCOMPRESSIBLE FLOW INTEGRAL EQUATIONS LAMINAR FLOW MOTION NONLINEAR PROBLEMS NUMERICAL SOLUTION Physics ROTATION Rotational flow and vorticity STEADY-STATE CONDITIONS VORTICES |
title | The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20calculation%20of%20some%20Batchelor%20flows:%20The%20Sadovskii%20vortex%20and%20rotational%20corner%20flow&rft.jtitle=Phys.%20Fluids;%20(United%20States)&rft.au=Moore,%20D.%20W.&rft.aucorp=Applied%20Mathematics,%20California%20Institute%20of%20Technology,%20Pasadena,%20California%2091125&rft.date=1988-05-01&rft.volume=31&rft.issue=5&rft.spage=978&rft.epage=990&rft.pages=978-990&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.866718&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_866718%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |