Global vortex pattern in a rotating plasma
A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐...
Gespeichert in:
Veröffentlicht in: | Phys. Fluids; (United States) 1987-07, Vol.30 (7), p.2097-2100 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2100 |
---|---|
container_issue | 7 |
container_start_page | 2097 |
container_title | Phys. Fluids; (United States) |
container_volume | 30 |
creator | Nycander, J. Pavlenko, V. P. |
description | A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐dimensional vortices, different from the solitary vortex structure found earlier for the nonlinear Rossby waves. |
doi_str_mv | 10.1063/1.866144 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_866144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_866144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-364c8e3f02b3774bfa79907910ffd3c033ec8782c714ab569eabd687cefbff4e3</originalsourceid><addsrcrecordid>eNp10EFLAzEQBeAgCtYq-BMW8aDC1kySJpujFK1CwYuew2ya6Mo2WZIg-u_dsuLN01w-3mMeIedAF0Alv4VFIyUIcUBmDCSvhdbNIZlRyqHWoOCYnOT8QSkTIPiM3Kz72GJffcZU3Fc1YCkuhaoLFVYpFixdeKuGHvMOT8mRxz67s987J68P9y-rx3rzvH5a3W1qy4QqNZfCNo57ylqulGg9Kq2p0kC933JLOXe2UQ2zCgS2S6kdtlvZKOt8671wfE4uptyYS2ey7Yqz7zaG4GwxkmumpBjR1YRsijkn582Quh2mbwPU7IcwYKYhRno50QGzxd4nDLbLf14JttQURnY9sX3j-HcM_0f-AKqzaF0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global vortex pattern in a rotating plasma</title><source>Alma/SFX Local Collection</source><creator>Nycander, J. ; Pavlenko, V. P.</creator><creatorcontrib>Nycander, J. ; Pavlenko, V. P. ; Institute of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden</creatorcontrib><description>A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐dimensional vortices, different from the solitary vortex structure found earlier for the nonlinear Rossby waves.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.866144</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700108 - Fusion Energy- Plasma Research- Wave Phenomena ; CHARGED PARTICLES ; EQUATIONS ; Exact sciences and technology ; FLUTE INSTABILITY ; INHOMOGENEOUS PLASMA ; INSTABILITY ; IONS ; LARMOR RADIUS ; MAGNETIC FIELDS ; NONLINEAR PROBLEMS ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; PLASMA ; PLASMA INSTABILITY ; PLASMA MACROINSTABILITIES ; ROTATING PLASMA ; TWO-DIMENSIONAL CALCULATIONS ; VORTICES ; Waves, oscillations, and instabilities in plasmas and intense beams</subject><ispartof>Phys. Fluids; (United States), 1987-07, Vol.30 (7), p.2097-2100</ispartof><rights>American Institute of Physics</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-364c8e3f02b3774bfa79907910ffd3c033ec8782c714ab569eabd687cefbff4e3</citedby><cites>FETCH-LOGICAL-c247t-364c8e3f02b3774bfa79907910ffd3c033ec8782c714ab569eabd687cefbff4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7425901$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6392764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nycander, J.</creatorcontrib><creatorcontrib>Pavlenko, V. P.</creatorcontrib><creatorcontrib>Institute of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden</creatorcontrib><title>Global vortex pattern in a rotating plasma</title><title>Phys. Fluids; (United States)</title><description>A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐dimensional vortices, different from the solitary vortex structure found earlier for the nonlinear Rossby waves.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700108 - Fusion Energy- Plasma Research- Wave Phenomena</subject><subject>CHARGED PARTICLES</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FLUTE INSTABILITY</subject><subject>INHOMOGENEOUS PLASMA</subject><subject>INSTABILITY</subject><subject>IONS</subject><subject>LARMOR RADIUS</subject><subject>MAGNETIC FIELDS</subject><subject>NONLINEAR PROBLEMS</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>PLASMA</subject><subject>PLASMA INSTABILITY</subject><subject>PLASMA MACROINSTABILITIES</subject><subject>ROTATING PLASMA</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><subject>VORTICES</subject><subject>Waves, oscillations, and instabilities in plasmas and intense beams</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp10EFLAzEQBeAgCtYq-BMW8aDC1kySJpujFK1CwYuew2ya6Mo2WZIg-u_dsuLN01w-3mMeIedAF0Alv4VFIyUIcUBmDCSvhdbNIZlRyqHWoOCYnOT8QSkTIPiM3Kz72GJffcZU3Fc1YCkuhaoLFVYpFixdeKuGHvMOT8mRxz67s987J68P9y-rx3rzvH5a3W1qy4QqNZfCNo57ylqulGg9Kq2p0kC933JLOXe2UQ2zCgS2S6kdtlvZKOt8671wfE4uptyYS2ey7Yqz7zaG4GwxkmumpBjR1YRsijkn582Quh2mbwPU7IcwYKYhRno50QGzxd4nDLbLf14JttQURnY9sX3j-HcM_0f-AKqzaF0</recordid><startdate>19870701</startdate><enddate>19870701</enddate><creator>Nycander, J.</creator><creator>Pavlenko, V. P.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19870701</creationdate><title>Global vortex pattern in a rotating plasma</title><author>Nycander, J. ; Pavlenko, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-364c8e3f02b3774bfa79907910ffd3c033ec8782c714ab569eabd687cefbff4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700108 - Fusion Energy- Plasma Research- Wave Phenomena</topic><topic>CHARGED PARTICLES</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FLUTE INSTABILITY</topic><topic>INHOMOGENEOUS PLASMA</topic><topic>INSTABILITY</topic><topic>IONS</topic><topic>LARMOR RADIUS</topic><topic>MAGNETIC FIELDS</topic><topic>NONLINEAR PROBLEMS</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>PLASMA</topic><topic>PLASMA INSTABILITY</topic><topic>PLASMA MACROINSTABILITIES</topic><topic>ROTATING PLASMA</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><topic>VORTICES</topic><topic>Waves, oscillations, and instabilities in plasmas and intense beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nycander, J.</creatorcontrib><creatorcontrib>Pavlenko, V. P.</creatorcontrib><creatorcontrib>Institute of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Fluids; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nycander, J.</au><au>Pavlenko, V. P.</au><aucorp>Institute of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global vortex pattern in a rotating plasma</atitle><jtitle>Phys. Fluids; (United States)</jtitle><date>1987-07-01</date><risdate>1987</risdate><volume>30</volume><issue>7</issue><spage>2097</spage><epage>2100</epage><pages>2097-2100</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐dimensional vortices, different from the solitary vortex structure found earlier for the nonlinear Rossby waves.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.866144</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9171 |
ispartof | Phys. Fluids; (United States), 1987-07, Vol.30 (7), p.2097-2100 |
issn | 0031-9171 2163-4998 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_866144 |
source | Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY 700108 - Fusion Energy- Plasma Research- Wave Phenomena CHARGED PARTICLES EQUATIONS Exact sciences and technology FLUTE INSTABILITY INHOMOGENEOUS PLASMA INSTABILITY IONS LARMOR RADIUS MAGNETIC FIELDS NONLINEAR PROBLEMS Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges PLASMA PLASMA INSTABILITY PLASMA MACROINSTABILITIES ROTATING PLASMA TWO-DIMENSIONAL CALCULATIONS VORTICES Waves, oscillations, and instabilities in plasmas and intense beams |
title | Global vortex pattern in a rotating plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20vortex%20pattern%20in%20a%20rotating%20plasma&rft.jtitle=Phys.%20Fluids;%20(United%20States)&rft.au=Nycander,%20J.&rft.aucorp=Institute%20of%20Technology,%20Uppsala%20University,%20Box%20534,%20S-751%2021%20Uppsala,%20Sweden&rft.date=1987-07-01&rft.volume=30&rft.issue=7&rft.spage=2097&rft.epage=2100&rft.pages=2097-2100&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.866144&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1063_1_866144%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |