Global vortex pattern in a rotating plasma

A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Fluids; (United States) 1987-07, Vol.30 (7), p.2097-2100
Hauptverfasser: Nycander, J., Pavlenko, V. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2100
container_issue 7
container_start_page 2097
container_title Phys. Fluids; (United States)
container_volume 30
creator Nycander, J.
Pavlenko, V. P.
description A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐dimensional vortices, different from the solitary vortex structure found earlier for the nonlinear Rossby waves.
doi_str_mv 10.1063/1.866144
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_866144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_866144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-364c8e3f02b3774bfa79907910ffd3c033ec8782c714ab569eabd687cefbff4e3</originalsourceid><addsrcrecordid>eNp10EFLAzEQBeAgCtYq-BMW8aDC1kySJpujFK1CwYuew2ya6Mo2WZIg-u_dsuLN01w-3mMeIedAF0Alv4VFIyUIcUBmDCSvhdbNIZlRyqHWoOCYnOT8QSkTIPiM3Kz72GJffcZU3Fc1YCkuhaoLFVYpFixdeKuGHvMOT8mRxz67s987J68P9y-rx3rzvH5a3W1qy4QqNZfCNo57ylqulGg9Kq2p0kC933JLOXe2UQ2zCgS2S6kdtlvZKOt8671wfE4uptyYS2ey7Yqz7zaG4GwxkmumpBjR1YRsijkn582Quh2mbwPU7IcwYKYhRno50QGzxd4nDLbLf14JttQURnY9sX3j-HcM_0f-AKqzaF0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global vortex pattern in a rotating plasma</title><source>Alma/SFX Local Collection</source><creator>Nycander, J. ; Pavlenko, V. P.</creator><creatorcontrib>Nycander, J. ; Pavlenko, V. P. ; Institute of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden</creatorcontrib><description>A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐dimensional vortices, different from the solitary vortex structure found earlier for the nonlinear Rossby waves.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.866144</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700108 - Fusion Energy- Plasma Research- Wave Phenomena ; CHARGED PARTICLES ; EQUATIONS ; Exact sciences and technology ; FLUTE INSTABILITY ; INHOMOGENEOUS PLASMA ; INSTABILITY ; IONS ; LARMOR RADIUS ; MAGNETIC FIELDS ; NONLINEAR PROBLEMS ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; PLASMA ; PLASMA INSTABILITY ; PLASMA MACROINSTABILITIES ; ROTATING PLASMA ; TWO-DIMENSIONAL CALCULATIONS ; VORTICES ; Waves, oscillations, and instabilities in plasmas and intense beams</subject><ispartof>Phys. Fluids; (United States), 1987-07, Vol.30 (7), p.2097-2100</ispartof><rights>American Institute of Physics</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-364c8e3f02b3774bfa79907910ffd3c033ec8782c714ab569eabd687cefbff4e3</citedby><cites>FETCH-LOGICAL-c247t-364c8e3f02b3774bfa79907910ffd3c033ec8782c714ab569eabd687cefbff4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7425901$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6392764$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nycander, J.</creatorcontrib><creatorcontrib>Pavlenko, V. P.</creatorcontrib><creatorcontrib>Institute of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden</creatorcontrib><title>Global vortex pattern in a rotating plasma</title><title>Phys. Fluids; (United States)</title><description>A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐dimensional vortices, different from the solitary vortex structure found earlier for the nonlinear Rossby waves.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700108 - Fusion Energy- Plasma Research- Wave Phenomena</subject><subject>CHARGED PARTICLES</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FLUTE INSTABILITY</subject><subject>INHOMOGENEOUS PLASMA</subject><subject>INSTABILITY</subject><subject>IONS</subject><subject>LARMOR RADIUS</subject><subject>MAGNETIC FIELDS</subject><subject>NONLINEAR PROBLEMS</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>PLASMA</subject><subject>PLASMA INSTABILITY</subject><subject>PLASMA MACROINSTABILITIES</subject><subject>ROTATING PLASMA</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><subject>VORTICES</subject><subject>Waves, oscillations, and instabilities in plasmas and intense beams</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp10EFLAzEQBeAgCtYq-BMW8aDC1kySJpujFK1CwYuew2ya6Mo2WZIg-u_dsuLN01w-3mMeIedAF0Alv4VFIyUIcUBmDCSvhdbNIZlRyqHWoOCYnOT8QSkTIPiM3Kz72GJffcZU3Fc1YCkuhaoLFVYpFixdeKuGHvMOT8mRxz67s987J68P9y-rx3rzvH5a3W1qy4QqNZfCNo57ylqulGg9Kq2p0kC933JLOXe2UQ2zCgS2S6kdtlvZKOt8671wfE4uptyYS2ey7Yqz7zaG4GwxkmumpBjR1YRsijkn582Quh2mbwPU7IcwYKYhRno50QGzxd4nDLbLf14JttQURnY9sX3j-HcM_0f-AKqzaF0</recordid><startdate>19870701</startdate><enddate>19870701</enddate><creator>Nycander, J.</creator><creator>Pavlenko, V. P.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19870701</creationdate><title>Global vortex pattern in a rotating plasma</title><author>Nycander, J. ; Pavlenko, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-364c8e3f02b3774bfa79907910ffd3c033ec8782c714ab569eabd687cefbff4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700108 - Fusion Energy- Plasma Research- Wave Phenomena</topic><topic>CHARGED PARTICLES</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FLUTE INSTABILITY</topic><topic>INHOMOGENEOUS PLASMA</topic><topic>INSTABILITY</topic><topic>IONS</topic><topic>LARMOR RADIUS</topic><topic>MAGNETIC FIELDS</topic><topic>NONLINEAR PROBLEMS</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>PLASMA</topic><topic>PLASMA INSTABILITY</topic><topic>PLASMA MACROINSTABILITIES</topic><topic>ROTATING PLASMA</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><topic>VORTICES</topic><topic>Waves, oscillations, and instabilities in plasmas and intense beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nycander, J.</creatorcontrib><creatorcontrib>Pavlenko, V. P.</creatorcontrib><creatorcontrib>Institute of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Fluids; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nycander, J.</au><au>Pavlenko, V. P.</au><aucorp>Institute of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global vortex pattern in a rotating plasma</atitle><jtitle>Phys. Fluids; (United States)</jtitle><date>1987-07-01</date><risdate>1987</risdate><volume>30</volume><issue>7</issue><spage>2097</spage><epage>2100</epage><pages>2097-2100</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>A set of nonlinear fluid equations that include the effect of finite ion Larmor radius is derived to describe the dynamics of flute modes in a rotating inhomogeneous plasma with a strong axial magnetic field. It is shown that these equations possess a solution in the form of a global pattern of two‐dimensional vortices, different from the solitary vortex structure found earlier for the nonlinear Rossby waves.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.866144</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof Phys. Fluids; (United States), 1987-07, Vol.30 (7), p.2097-2100
issn 0031-9171
2163-4998
language eng
recordid cdi_crossref_primary_10_1063_1_866144
source Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
700108 - Fusion Energy- Plasma Research- Wave Phenomena
CHARGED PARTICLES
EQUATIONS
Exact sciences and technology
FLUTE INSTABILITY
INHOMOGENEOUS PLASMA
INSTABILITY
IONS
LARMOR RADIUS
MAGNETIC FIELDS
NONLINEAR PROBLEMS
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
PLASMA
PLASMA INSTABILITY
PLASMA MACROINSTABILITIES
ROTATING PLASMA
TWO-DIMENSIONAL CALCULATIONS
VORTICES
Waves, oscillations, and instabilities in plasmas and intense beams
title Global vortex pattern in a rotating plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20vortex%20pattern%20in%20a%20rotating%20plasma&rft.jtitle=Phys.%20Fluids;%20(United%20States)&rft.au=Nycander,%20J.&rft.aucorp=Institute%20of%20Technology,%20Uppsala%20University,%20Box%20534,%20S-751%2021%20Uppsala,%20Sweden&rft.date=1987-07-01&rft.volume=30&rft.issue=7&rft.spage=2097&rft.epage=2100&rft.pages=2097-2100&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.866144&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1063_1_866144%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true