Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models

The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Fluids; (United States) 1983-04, Vol.26 (4), p.1139-1153
Hauptverfasser: Overman, E. A., Zabusky, N. J., Ossakow, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1153
container_issue 4
container_start_page 1139
container_title Phys. Fluids; (United States)
container_volume 26
creator Overman, E. A.
Zabusky, N. J.
Ossakow, S. L.
description The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion operator that models aspects of the diffusion operator in two dimensions. A complete linear stability analysis of a circular cloud shows that a single‐mode excitation ‘‘cascades downward’’ in wavenumber as it grows in amplitude, a process that results from the symmetry‐breaking electric field. Approximate formulas are derived for the amplitude growth and cascade‐down phenomena and verified with precise numerical calculations. A simple rescaling shows that clouds with large λ (=cloud‐ion density/ambient‐ion density) evolve more slowly and appear more dissipative. The regularized contour‐dynamical algorithm for computations in the nonlinear regime is validated against the linear analysis and truncation errors are assessed by using different spatial resolutions. Calculations in the nonlinear regime show the experimentally observed ‘‘backside’’ striations. Furthermore, at long times, a secondary structure arises on the sides of the primary striations. A comparison of simulations with different λ shows that nonlinear effects arise sooner in normalized time (but longer in real time) if λ is larger.
doi_str_mv 10.1063/1.864225
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_864225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_864225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-dfd67e352d030d8aee9d71521d09469cc81255d5255413cd4cf7f40926bec43f3</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDyCxQRDgs92knpEFR-VkBiAOXJthxo5dmUnlcrUR-AZeRJSBdhY7pbf_XV3CJ0DyYGU7BryWckpLQ7QhELJMi7E7BBNCGGQCajgGJ2k9E4I5cDZBO0WwYe0XploFV47mVqJlQu9xnrrZWtVwhsrcTRvvZPRfhiNVfBd6OMfyPEix8-dXFpnuy2WXmMfvLPeyIjNJri-s8Hj0ODgzdfu83e-Ddq4dIqOGumSOfvpU_R6d_syf8gen-4X85vHTFECXaYbXVaGFVQTRvRMGiN0BQUFTQQvhVIzoEWhi6FwYEpz1VQNJ4KWS6M4a9gUXYy5IXW2Tsp2Rq2GVbxRXV0CFwWIAV2OSMWQUjRNvY62lXFbA6n3762hHt870KuR7qPk_sL_7TfB2nzZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models</title><source>Alma/SFX Local Collection</source><creator>Overman, E. A. ; Zabusky, N. J. ; Ossakow, S. L.</creator><creatorcontrib>Overman, E. A. ; Zabusky, N. J. ; Ossakow, S. L. ; Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261</creatorcontrib><description>The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion operator that models aspects of the diffusion operator in two dimensions. A complete linear stability analysis of a circular cloud shows that a single‐mode excitation ‘‘cascades downward’’ in wavenumber as it grows in amplitude, a process that results from the symmetry‐breaking electric field. Approximate formulas are derived for the amplitude growth and cascade‐down phenomena and verified with precise numerical calculations. A simple rescaling shows that clouds with large λ (=cloud‐ion density/ambient‐ion density) evolve more slowly and appear more dissipative. The regularized contour‐dynamical algorithm for computations in the nonlinear regime is validated against the linear analysis and truncation errors are assessed by using different spatial resolutions. Calculations in the nonlinear regime show the experimentally observed ‘‘backside’’ striations. Furthermore, at long times, a secondary structure arises on the sides of the primary striations. A comparison of simulations with different λ shows that nonlinear effects arise sooner in normalized time (but longer in real time) if λ is larger.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.864225</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>United States</publisher><subject>640201 - Atmospheric Physics- Auroral, Ionospheric, &amp; Magetospheric Phenomena ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFERENTIAL EQUATIONS ; DYNAMICS ; EARTH ATMOSPHERE ; ELECTRIC FIELDS ; EQUATIONS ; EQUATIONS OF MOTION ; IONOSPHERE ; MAGNETIC FIELDS ; MECHANICS ; NONLINEAR PROBLEMS ; PARTIAL DIFFERENTIAL EQUATIONS ; PLANETARY IONOSPHERES ; PLASMA ; PLASMA SIMULATION ; SIMULATION ; STABILITY ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>Phys. Fluids; (United States), 1983-04, Vol.26 (4), p.1139-1153</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c201t-dfd67e352d030d8aee9d71521d09469cc81255d5255413cd4cf7f40926bec43f3</citedby><cites>FETCH-LOGICAL-c201t-dfd67e352d030d8aee9d71521d09469cc81255d5255413cd4cf7f40926bec43f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6149519$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Overman, E. A.</creatorcontrib><creatorcontrib>Zabusky, N. J.</creatorcontrib><creatorcontrib>Ossakow, S. L.</creatorcontrib><creatorcontrib>Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261</creatorcontrib><title>Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models</title><title>Phys. Fluids; (United States)</title><description>The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion operator that models aspects of the diffusion operator in two dimensions. A complete linear stability analysis of a circular cloud shows that a single‐mode excitation ‘‘cascades downward’’ in wavenumber as it grows in amplitude, a process that results from the symmetry‐breaking electric field. Approximate formulas are derived for the amplitude growth and cascade‐down phenomena and verified with precise numerical calculations. A simple rescaling shows that clouds with large λ (=cloud‐ion density/ambient‐ion density) evolve more slowly and appear more dissipative. The regularized contour‐dynamical algorithm for computations in the nonlinear regime is validated against the linear analysis and truncation errors are assessed by using different spatial resolutions. Calculations in the nonlinear regime show the experimentally observed ‘‘backside’’ striations. Furthermore, at long times, a secondary structure arises on the sides of the primary striations. A comparison of simulations with different λ shows that nonlinear effects arise sooner in normalized time (but longer in real time) if λ is larger.</description><subject>640201 - Atmospheric Physics- Auroral, Ionospheric, &amp; Magetospheric Phenomena</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DYNAMICS</subject><subject>EARTH ATMOSPHERE</subject><subject>ELECTRIC FIELDS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>IONOSPHERE</subject><subject>MAGNETIC FIELDS</subject><subject>MECHANICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PLANETARY IONOSPHERES</subject><subject>PLASMA</subject><subject>PLASMA SIMULATION</subject><subject>SIMULATION</subject><subject>STABILITY</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpSDyCxQRDgs92knpEFR-VkBiAOXJthxo5dmUnlcrUR-AZeRJSBdhY7pbf_XV3CJ0DyYGU7BryWckpLQ7QhELJMi7E7BBNCGGQCajgGJ2k9E4I5cDZBO0WwYe0XploFV47mVqJlQu9xnrrZWtVwhsrcTRvvZPRfhiNVfBd6OMfyPEix8-dXFpnuy2WXmMfvLPeyIjNJri-s8Hj0ODgzdfu83e-Ddq4dIqOGumSOfvpU_R6d_syf8gen-4X85vHTFECXaYbXVaGFVQTRvRMGiN0BQUFTQQvhVIzoEWhi6FwYEpz1VQNJ4KWS6M4a9gUXYy5IXW2Tsp2Rq2GVbxRXV0CFwWIAV2OSMWQUjRNvY62lXFbA6n3762hHt870KuR7qPk_sL_7TfB2nzZ</recordid><startdate>198304</startdate><enddate>198304</enddate><creator>Overman, E. A.</creator><creator>Zabusky, N. J.</creator><creator>Ossakow, S. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198304</creationdate><title>Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models</title><author>Overman, E. A. ; Zabusky, N. J. ; Ossakow, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-dfd67e352d030d8aee9d71521d09469cc81255d5255413cd4cf7f40926bec43f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>640201 - Atmospheric Physics- Auroral, Ionospheric, &amp; Magetospheric Phenomena</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DYNAMICS</topic><topic>EARTH ATMOSPHERE</topic><topic>ELECTRIC FIELDS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>IONOSPHERE</topic><topic>MAGNETIC FIELDS</topic><topic>MECHANICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PLANETARY IONOSPHERES</topic><topic>PLASMA</topic><topic>PLASMA SIMULATION</topic><topic>SIMULATION</topic><topic>STABILITY</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Overman, E. A.</creatorcontrib><creatorcontrib>Zabusky, N. J.</creatorcontrib><creatorcontrib>Ossakow, S. L.</creatorcontrib><creatorcontrib>Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Fluids; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Overman, E. A.</au><au>Zabusky, N. J.</au><au>Ossakow, S. L.</au><aucorp>Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models</atitle><jtitle>Phys. Fluids; (United States)</jtitle><date>1983-04</date><risdate>1983</risdate><volume>26</volume><issue>4</issue><spage>1139</spage><epage>1153</epage><pages>1139-1153</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion operator that models aspects of the diffusion operator in two dimensions. A complete linear stability analysis of a circular cloud shows that a single‐mode excitation ‘‘cascades downward’’ in wavenumber as it grows in amplitude, a process that results from the symmetry‐breaking electric field. Approximate formulas are derived for the amplitude growth and cascade‐down phenomena and verified with precise numerical calculations. A simple rescaling shows that clouds with large λ (=cloud‐ion density/ambient‐ion density) evolve more slowly and appear more dissipative. The regularized contour‐dynamical algorithm for computations in the nonlinear regime is validated against the linear analysis and truncation errors are assessed by using different spatial resolutions. Calculations in the nonlinear regime show the experimentally observed ‘‘backside’’ striations. Furthermore, at long times, a secondary structure arises on the sides of the primary striations. A comparison of simulations with different λ shows that nonlinear effects arise sooner in normalized time (but longer in real time) if λ is larger.</abstract><cop>United States</cop><doi>10.1063/1.864225</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof Phys. Fluids; (United States), 1983-04, Vol.26 (4), p.1139-1153
issn 0031-9171
2163-4998
language eng
recordid cdi_crossref_primary_10_1063_1_864225
source Alma/SFX Local Collection
subjects 640201 - Atmospheric Physics- Auroral, Ionospheric, & Magetospheric Phenomena
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DIFFERENTIAL EQUATIONS
DYNAMICS
EARTH ATMOSPHERE
ELECTRIC FIELDS
EQUATIONS
EQUATIONS OF MOTION
IONOSPHERE
MAGNETIC FIELDS
MECHANICS
NONLINEAR PROBLEMS
PARTIAL DIFFERENTIAL EQUATIONS
PLANETARY IONOSPHERES
PLASMA
PLASMA SIMULATION
SIMULATION
STABILITY
TWO-DIMENSIONAL CALCULATIONS
title Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionospheric%20plasma%20cloud%20dynamics%20via%20regularized%20contour%20dynamics.%20I.%20Stability%20and%20nonlinear%20evolution%20of%20one%E2%80%90contour%20models&rft.jtitle=Phys.%20Fluids;%20(United%20States)&rft.au=Overman,%20E.%20A.&rft.aucorp=Institute%20for%20Computational%20Mathematics%20and%20Applications,%20Department%20of%20Mathematics%20and%20Statistics,%20University%20of%20Pittsburgh,%20Pittsburgh,%20Pennsylvania%2015261&rft.date=1983-04&rft.volume=26&rft.issue=4&rft.spage=1139&rft.epage=1153&rft.pages=1139-1153&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.864225&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_864225%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true