Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models
The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion ope...
Gespeichert in:
Veröffentlicht in: | Phys. Fluids; (United States) 1983-04, Vol.26 (4), p.1139-1153 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1153 |
---|---|
container_issue | 4 |
container_start_page | 1139 |
container_title | Phys. Fluids; (United States) |
container_volume | 26 |
creator | Overman, E. A. Zabusky, N. J. Ossakow, S. L. |
description | The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion operator that models aspects of the diffusion operator in two dimensions. A complete linear stability analysis of a circular cloud shows that a single‐mode excitation ‘‘cascades downward’’ in wavenumber as it grows in amplitude, a process that results from the symmetry‐breaking electric field. Approximate formulas are derived for the amplitude growth and cascade‐down phenomena and verified with precise numerical calculations. A simple rescaling shows that clouds with large λ (=cloud‐ion density/ambient‐ion density) evolve more slowly and appear more dissipative. The regularized contour‐dynamical algorithm for computations in the nonlinear regime is validated against the linear analysis and truncation errors are assessed by using different spatial resolutions. Calculations in the nonlinear regime show the experimentally observed ‘‘backside’’ striations. Furthermore, at long times, a secondary structure arises on the sides of the primary striations. A comparison of simulations with different λ shows that nonlinear effects arise sooner in normalized time (but longer in real time) if λ is larger. |
doi_str_mv | 10.1063/1.864225 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_864225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_864225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-dfd67e352d030d8aee9d71521d09469cc81255d5255413cd4cf7f40926bec43f3</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDyCxQRDgs92knpEFR-VkBiAOXJthxo5dmUnlcrUR-AZeRJSBdhY7pbf_XV3CJ0DyYGU7BryWckpLQ7QhELJMi7E7BBNCGGQCajgGJ2k9E4I5cDZBO0WwYe0XploFV47mVqJlQu9xnrrZWtVwhsrcTRvvZPRfhiNVfBd6OMfyPEix8-dXFpnuy2WXmMfvLPeyIjNJri-s8Hj0ODgzdfu83e-Ddq4dIqOGumSOfvpU_R6d_syf8gen-4X85vHTFECXaYbXVaGFVQTRvRMGiN0BQUFTQQvhVIzoEWhi6FwYEpz1VQNJ4KWS6M4a9gUXYy5IXW2Tsp2Rq2GVbxRXV0CFwWIAV2OSMWQUjRNvY62lXFbA6n3762hHt870KuR7qPk_sL_7TfB2nzZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models</title><source>Alma/SFX Local Collection</source><creator>Overman, E. A. ; Zabusky, N. J. ; Ossakow, S. L.</creator><creatorcontrib>Overman, E. A. ; Zabusky, N. J. ; Ossakow, S. L. ; Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261</creatorcontrib><description>The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion operator that models aspects of the diffusion operator in two dimensions. A complete linear stability analysis of a circular cloud shows that a single‐mode excitation ‘‘cascades downward’’ in wavenumber as it grows in amplitude, a process that results from the symmetry‐breaking electric field. Approximate formulas are derived for the amplitude growth and cascade‐down phenomena and verified with precise numerical calculations. A simple rescaling shows that clouds with large λ (=cloud‐ion density/ambient‐ion density) evolve more slowly and appear more dissipative. The regularized contour‐dynamical algorithm for computations in the nonlinear regime is validated against the linear analysis and truncation errors are assessed by using different spatial resolutions. Calculations in the nonlinear regime show the experimentally observed ‘‘backside’’ striations. Furthermore, at long times, a secondary structure arises on the sides of the primary striations. A comparison of simulations with different λ shows that nonlinear effects arise sooner in normalized time (but longer in real time) if λ is larger.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.864225</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><publisher>United States</publisher><subject>640201 - Atmospheric Physics- Auroral, Ionospheric, & Magetospheric Phenomena ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFERENTIAL EQUATIONS ; DYNAMICS ; EARTH ATMOSPHERE ; ELECTRIC FIELDS ; EQUATIONS ; EQUATIONS OF MOTION ; IONOSPHERE ; MAGNETIC FIELDS ; MECHANICS ; NONLINEAR PROBLEMS ; PARTIAL DIFFERENTIAL EQUATIONS ; PLANETARY IONOSPHERES ; PLASMA ; PLASMA SIMULATION ; SIMULATION ; STABILITY ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>Phys. Fluids; (United States), 1983-04, Vol.26 (4), p.1139-1153</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c201t-dfd67e352d030d8aee9d71521d09469cc81255d5255413cd4cf7f40926bec43f3</citedby><cites>FETCH-LOGICAL-c201t-dfd67e352d030d8aee9d71521d09469cc81255d5255413cd4cf7f40926bec43f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6149519$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Overman, E. A.</creatorcontrib><creatorcontrib>Zabusky, N. J.</creatorcontrib><creatorcontrib>Ossakow, S. L.</creatorcontrib><creatorcontrib>Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261</creatorcontrib><title>Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models</title><title>Phys. Fluids; (United States)</title><description>The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion operator that models aspects of the diffusion operator in two dimensions. A complete linear stability analysis of a circular cloud shows that a single‐mode excitation ‘‘cascades downward’’ in wavenumber as it grows in amplitude, a process that results from the symmetry‐breaking electric field. Approximate formulas are derived for the amplitude growth and cascade‐down phenomena and verified with precise numerical calculations. A simple rescaling shows that clouds with large λ (=cloud‐ion density/ambient‐ion density) evolve more slowly and appear more dissipative. The regularized contour‐dynamical algorithm for computations in the nonlinear regime is validated against the linear analysis and truncation errors are assessed by using different spatial resolutions. Calculations in the nonlinear regime show the experimentally observed ‘‘backside’’ striations. Furthermore, at long times, a secondary structure arises on the sides of the primary striations. A comparison of simulations with different λ shows that nonlinear effects arise sooner in normalized time (but longer in real time) if λ is larger.</description><subject>640201 - Atmospheric Physics- Auroral, Ionospheric, & Magetospheric Phenomena</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DYNAMICS</subject><subject>EARTH ATMOSPHERE</subject><subject>ELECTRIC FIELDS</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>IONOSPHERE</subject><subject>MAGNETIC FIELDS</subject><subject>MECHANICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PLANETARY IONOSPHERES</subject><subject>PLASMA</subject><subject>PLASMA SIMULATION</subject><subject>SIMULATION</subject><subject>STABILITY</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpSDyCxQRDgs92knpEFR-VkBiAOXJthxo5dmUnlcrUR-AZeRJSBdhY7pbf_XV3CJ0DyYGU7BryWckpLQ7QhELJMi7E7BBNCGGQCajgGJ2k9E4I5cDZBO0WwYe0XploFV47mVqJlQu9xnrrZWtVwhsrcTRvvZPRfhiNVfBd6OMfyPEix8-dXFpnuy2WXmMfvLPeyIjNJri-s8Hj0ODgzdfu83e-Ddq4dIqOGumSOfvpU_R6d_syf8gen-4X85vHTFECXaYbXVaGFVQTRvRMGiN0BQUFTQQvhVIzoEWhi6FwYEpz1VQNJ4KWS6M4a9gUXYy5IXW2Tsp2Rq2GVbxRXV0CFwWIAV2OSMWQUjRNvY62lXFbA6n3762hHt870KuR7qPk_sL_7TfB2nzZ</recordid><startdate>198304</startdate><enddate>198304</enddate><creator>Overman, E. A.</creator><creator>Zabusky, N. J.</creator><creator>Ossakow, S. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198304</creationdate><title>Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models</title><author>Overman, E. A. ; Zabusky, N. J. ; Ossakow, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-dfd67e352d030d8aee9d71521d09469cc81255d5255413cd4cf7f40926bec43f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>640201 - Atmospheric Physics- Auroral, Ionospheric, & Magetospheric Phenomena</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DYNAMICS</topic><topic>EARTH ATMOSPHERE</topic><topic>ELECTRIC FIELDS</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>IONOSPHERE</topic><topic>MAGNETIC FIELDS</topic><topic>MECHANICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PLANETARY IONOSPHERES</topic><topic>PLASMA</topic><topic>PLASMA SIMULATION</topic><topic>SIMULATION</topic><topic>STABILITY</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Overman, E. A.</creatorcontrib><creatorcontrib>Zabusky, N. J.</creatorcontrib><creatorcontrib>Ossakow, S. L.</creatorcontrib><creatorcontrib>Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Fluids; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Overman, E. A.</au><au>Zabusky, N. J.</au><au>Ossakow, S. L.</au><aucorp>Institute for Computational Mathematics and Applications, Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models</atitle><jtitle>Phys. Fluids; (United States)</jtitle><date>1983-04</date><risdate>1983</risdate><volume>26</volume><issue>4</issue><spage>1139</spage><epage>1153</epage><pages>1139-1153</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>The linear stability and nonlinear evolution of a regularized contour dynamical model of an ionospheric plasma cloud (or deformable dielectric) is examined. That is, the cloud is modeled by piecewise‐constant ion density regions; and the regularization is accomplished with a tangential diffusion operator that models aspects of the diffusion operator in two dimensions. A complete linear stability analysis of a circular cloud shows that a single‐mode excitation ‘‘cascades downward’’ in wavenumber as it grows in amplitude, a process that results from the symmetry‐breaking electric field. Approximate formulas are derived for the amplitude growth and cascade‐down phenomena and verified with precise numerical calculations. A simple rescaling shows that clouds with large λ (=cloud‐ion density/ambient‐ion density) evolve more slowly and appear more dissipative. The regularized contour‐dynamical algorithm for computations in the nonlinear regime is validated against the linear analysis and truncation errors are assessed by using different spatial resolutions. Calculations in the nonlinear regime show the experimentally observed ‘‘backside’’ striations. Furthermore, at long times, a secondary structure arises on the sides of the primary striations. A comparison of simulations with different λ shows that nonlinear effects arise sooner in normalized time (but longer in real time) if λ is larger.</abstract><cop>United States</cop><doi>10.1063/1.864225</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9171 |
ispartof | Phys. Fluids; (United States), 1983-04, Vol.26 (4), p.1139-1153 |
issn | 0031-9171 2163-4998 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_864225 |
source | Alma/SFX Local Collection |
subjects | 640201 - Atmospheric Physics- Auroral, Ionospheric, & Magetospheric Phenomena CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DIFFERENTIAL EQUATIONS DYNAMICS EARTH ATMOSPHERE ELECTRIC FIELDS EQUATIONS EQUATIONS OF MOTION IONOSPHERE MAGNETIC FIELDS MECHANICS NONLINEAR PROBLEMS PARTIAL DIFFERENTIAL EQUATIONS PLANETARY IONOSPHERES PLASMA PLASMA SIMULATION SIMULATION STABILITY TWO-DIMENSIONAL CALCULATIONS |
title | Ionospheric plasma cloud dynamics via regularized contour dynamics. I. Stability and nonlinear evolution of one‐contour models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionospheric%20plasma%20cloud%20dynamics%20via%20regularized%20contour%20dynamics.%20I.%20Stability%20and%20nonlinear%20evolution%20of%20one%E2%80%90contour%20models&rft.jtitle=Phys.%20Fluids;%20(United%20States)&rft.au=Overman,%20E.%20A.&rft.aucorp=Institute%20for%20Computational%20Mathematics%20and%20Applications,%20Department%20of%20Mathematics%20and%20Statistics,%20University%20of%20Pittsburgh,%20Pittsburgh,%20Pennsylvania%2015261&rft.date=1983-04&rft.volume=26&rft.issue=4&rft.spage=1139&rft.epage=1153&rft.pages=1139-1153&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.864225&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_864225%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |