Motion of a rising thermal

The simple model used by Wang [C. P. Wang, Phys. Fluids 16, 744 (1973)] to describe the motion of a turbulent thermal in a uniform or a stably stratified atmosphere is modified and extended. A simple expression is derived which enables one to determine the entrainment coefficient from data on the ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Physics of fluids (1958) 1975-01, Vol.18 (1), p.15-19
Hauptverfasser: Shui, Ven H., Weyl, Guy M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 15
container_title The Physics of fluids (1958)
container_volume 18
creator Shui, Ven H.
Weyl, Guy M.
description The simple model used by Wang [C. P. Wang, Phys. Fluids 16, 744 (1973)] to describe the motion of a turbulent thermal in a uniform or a stably stratified atmosphere is modified and extended. A simple expression is derived which enables one to determine the entrainment coefficient from data on the rise and the size of a thermal. Analytical solutions are obtained for the maximum rise and the corresponding size of a thermal in a stable atmosphere. The model is applicable to thermals of all sizes, but comparisons with large thermals formed by strong explosions have been stressed. The results show good agreement between theory and observation and indicate that the entrainment coefficient for these thermals is of the same order of magnitude as those for other thermals (α ≃ 0.25) reported in the literature. The numerical result reported by Wang is shown to be a special case of the more general analytical solution derived in the present work.
doi_str_mv 10.1063/1.860986
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_860986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_860986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-56bddd2dae0ea96bcb0ff71fa1927176956c95831bb1c1568c2d4019c7252dd03</originalsourceid><addsrcrecordid>eNp1jztLBDEURoMoOK6CtdWUWmS9N5m8SllcFVZstA55amR3R5Jp_Pe6jK3V1xw-ziHkEmGJIPktLrUEo-UR6RhKTgdj9DHpADhSgwpPyVlrnwBswIF35Op5nMq478fcu76WVvbv_fSR6s5tz8lJdtuWLv52Qd7W96-rR7p5eXha3W1oYBInKqSPMbLoEiRnpA8eclaYHRqmUEkjZDBCc_QeAwqpA4sDoAmKCRYj8AW5nn9DHVurKduvWnauflsEe2iyaOemX_RmRlsokzuI_8_-ANh4SXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Motion of a rising thermal</title><source>Alma/SFX Local Collection</source><creator>Shui, Ven H. ; Weyl, Guy M.</creator><creatorcontrib>Shui, Ven H. ; Weyl, Guy M.</creatorcontrib><description>The simple model used by Wang [C. P. Wang, Phys. Fluids 16, 744 (1973)] to describe the motion of a turbulent thermal in a uniform or a stably stratified atmosphere is modified and extended. A simple expression is derived which enables one to determine the entrainment coefficient from data on the rise and the size of a thermal. Analytical solutions are obtained for the maximum rise and the corresponding size of a thermal in a stable atmosphere. The model is applicable to thermals of all sizes, but comparisons with large thermals formed by strong explosions have been stressed. The results show good agreement between theory and observation and indicate that the entrainment coefficient for these thermals is of the same order of magnitude as those for other thermals (α ≃ 0.25) reported in the literature. The numerical result reported by Wang is shown to be a special case of the more general analytical solution derived in the present work.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.860986</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><ispartof>The Physics of fluids (1958), 1975-01, Vol.18 (1), p.15-19</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-56bddd2dae0ea96bcb0ff71fa1927176956c95831bb1c1568c2d4019c7252dd03</citedby><cites>FETCH-LOGICAL-c261t-56bddd2dae0ea96bcb0ff71fa1927176956c95831bb1c1568c2d4019c7252dd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shui, Ven H.</creatorcontrib><creatorcontrib>Weyl, Guy M.</creatorcontrib><title>Motion of a rising thermal</title><title>The Physics of fluids (1958)</title><description>The simple model used by Wang [C. P. Wang, Phys. Fluids 16, 744 (1973)] to describe the motion of a turbulent thermal in a uniform or a stably stratified atmosphere is modified and extended. A simple expression is derived which enables one to determine the entrainment coefficient from data on the rise and the size of a thermal. Analytical solutions are obtained for the maximum rise and the corresponding size of a thermal in a stable atmosphere. The model is applicable to thermals of all sizes, but comparisons with large thermals formed by strong explosions have been stressed. The results show good agreement between theory and observation and indicate that the entrainment coefficient for these thermals is of the same order of magnitude as those for other thermals (α ≃ 0.25) reported in the literature. The numerical result reported by Wang is shown to be a special case of the more general analytical solution derived in the present work.</description><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNp1jztLBDEURoMoOK6CtdWUWmS9N5m8SllcFVZstA55amR3R5Jp_Pe6jK3V1xw-ziHkEmGJIPktLrUEo-UR6RhKTgdj9DHpADhSgwpPyVlrnwBswIF35Op5nMq478fcu76WVvbv_fSR6s5tz8lJdtuWLv52Qd7W96-rR7p5eXha3W1oYBInKqSPMbLoEiRnpA8eclaYHRqmUEkjZDBCc_QeAwqpA4sDoAmKCRYj8AW5nn9DHVurKduvWnauflsEe2iyaOemX_RmRlsokzuI_8_-ANh4SXs</recordid><startdate>197501</startdate><enddate>197501</enddate><creator>Shui, Ven H.</creator><creator>Weyl, Guy M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197501</creationdate><title>Motion of a rising thermal</title><author>Shui, Ven H. ; Weyl, Guy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-56bddd2dae0ea96bcb0ff71fa1927176956c95831bb1c1568c2d4019c7252dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shui, Ven H.</creatorcontrib><creatorcontrib>Weyl, Guy M.</creatorcontrib><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shui, Ven H.</au><au>Weyl, Guy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion of a rising thermal</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1975-01</date><risdate>1975</risdate><volume>18</volume><issue>1</issue><spage>15</spage><epage>19</epage><pages>15-19</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>The simple model used by Wang [C. P. Wang, Phys. Fluids 16, 744 (1973)] to describe the motion of a turbulent thermal in a uniform or a stably stratified atmosphere is modified and extended. A simple expression is derived which enables one to determine the entrainment coefficient from data on the rise and the size of a thermal. Analytical solutions are obtained for the maximum rise and the corresponding size of a thermal in a stable atmosphere. The model is applicable to thermals of all sizes, but comparisons with large thermals formed by strong explosions have been stressed. The results show good agreement between theory and observation and indicate that the entrainment coefficient for these thermals is of the same order of magnitude as those for other thermals (α ≃ 0.25) reported in the literature. The numerical result reported by Wang is shown to be a special case of the more general analytical solution derived in the present work.</abstract><doi>10.1063/1.860986</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof The Physics of fluids (1958), 1975-01, Vol.18 (1), p.15-19
issn 0031-9171
2163-4998
language eng
recordid cdi_crossref_primary_10_1063_1_860986
source Alma/SFX Local Collection
title Motion of a rising thermal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20of%20a%20rising%20thermal&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Shui,%20Ven%20H.&rft.date=1975-01&rft.volume=18&rft.issue=1&rft.spage=15&rft.epage=19&rft.pages=15-19&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.860986&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_860986%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true