Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa
A new fundamental equation explicit in Helmholtz energy for thermodynamic properties of ethylene from the freezing line to 450 K at pressures to 260 MPa is presented. Independent equations for the vapor pressure for the saturated liquid and vapor densities as functions of temperature, and for the id...
Gespeichert in:
Veröffentlicht in: | Journal of physical and chemical reference data 1986-04, Vol.15 (2), p.593-734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 2 |
container_start_page | 593 |
container_title | Journal of physical and chemical reference data |
container_volume | 15 |
creator | Jahangiri, Majid Jacobsen, Richard T Stewart, Richard B. McCarty, Robert D. |
description | A new fundamental equation explicit in Helmholtz energy for thermodynamic properties of ethylene from the freezing line to 450 K at pressures to 260 MPa is presented. Independent equations for the vapor pressure for the saturated liquid and vapor densities as functions of temperature, and for the ideal gas heat capacity are also included. The fundamental equation was selected from a comprehensive function of 100 terms on the basis of a statistical analysis of the quality of the fit. The coefficients of the fundamental equation were determined by a weighted least‐squares fit to selected P‐ρ‐T data, saturated liquid, and saturated vapor density data to define the phase equilibrium criteria for coexistence, C
v
data, velocity of sound data, and second virial coefficient data. The fundamental equation and the derivative functions for calculating internal energy, enthalpy, entropy, isochoric heat capacity (C
v
), isobaric heat capacity (C
p
), and velocity of sound are included. Tables of thermodynamic properties of ethylene are given for liquid and vapor states within the range of validity of the fundamental equation. The fundamental equation reported here may generally be used to calculate pressures and densities with an uncertainty of ±0.1%, heat capacities within ±3%, and velocity of sound values within ±1%. Comparisons of calculated properties to experimental data are included to verify the accuracy of the formulation. |
doi_str_mv | 10.1063/1.555753 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_555753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jpr</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-4489ba4f43053046bb2a5ff398556537129efc73b390ce53c73ad8a54e0e16e03</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvgR8jBgx62Jps_mz1KaVWs2EO9CUs2ndhId7MkUaif3i0rvQheZobHb96Dh9AlJRNKJLulEyFEIdgRGlGRl1mhuDhGI0J4keVSlafoLMYPQkihVD5Cb6sNhMavd61unMHL4DsIyUHE3uJZ2uy20AK2wTc4bQDPA8C3a9_xwvVy8pgLgp-wTv0nxPjZj72aS4Kfl_ocnVi9jXDxu8fodT5bTR-yxcv94_RukRmey5Rxrspac8sZEYxwWde5FtayUgkhBStoXoI1BatZSQwI1p96rbTgQIBKIGyMrgdfE3yMAWzVBdfosKsoqfatVLQaWunRqwHtdDR6a4NujYsHXhVMSLZ3vBmwaFzSyfn2gHz5cLCrurX9j_0T_wNM7Xqk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Jahangiri, Majid ; Jacobsen, Richard T ; Stewart, Richard B. ; McCarty, Robert D.</creator><creatorcontrib>Jahangiri, Majid ; Jacobsen, Richard T ; Stewart, Richard B. ; McCarty, Robert D.</creatorcontrib><description>A new fundamental equation explicit in Helmholtz energy for thermodynamic properties of ethylene from the freezing line to 450 K at pressures to 260 MPa is presented. Independent equations for the vapor pressure for the saturated liquid and vapor densities as functions of temperature, and for the ideal gas heat capacity are also included. The fundamental equation was selected from a comprehensive function of 100 terms on the basis of a statistical analysis of the quality of the fit. The coefficients of the fundamental equation were determined by a weighted least‐squares fit to selected P‐ρ‐T data, saturated liquid, and saturated vapor density data to define the phase equilibrium criteria for coexistence, C
v
data, velocity of sound data, and second virial coefficient data. The fundamental equation and the derivative functions for calculating internal energy, enthalpy, entropy, isochoric heat capacity (C
v
), isobaric heat capacity (C
p
), and velocity of sound are included. Tables of thermodynamic properties of ethylene are given for liquid and vapor states within the range of validity of the fundamental equation. The fundamental equation reported here may generally be used to calculate pressures and densities with an uncertainty of ±0.1%, heat capacities within ±3%, and velocity of sound values within ±1%. Comparisons of calculated properties to experimental data are included to verify the accuracy of the formulation.</description><identifier>ISSN: 0047-2689</identifier><identifier>EISSN: 1529-7845</identifier><identifier>DOI: 10.1063/1.555753</identifier><identifier>CODEN: JPCRBU</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Chemical thermodynamics ; Chemistry ; Elements, mineral and organic compounds ; Exact sciences and technology ; General and physical chemistry ; General. Theory ; Metals and alloys ; Mixtures ; Thermodynamic properties</subject><ispartof>Journal of physical and chemical reference data, 1986-04, Vol.15 (2), p.593-734</ispartof><rights>American Institute of Physics for the National Institute of Standards and Technology</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-4489ba4f43053046bb2a5ff398556537129efc73b390ce53c73ad8a54e0e16e03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8735630$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jahangiri, Majid</creatorcontrib><creatorcontrib>Jacobsen, Richard T</creatorcontrib><creatorcontrib>Stewart, Richard B.</creatorcontrib><creatorcontrib>McCarty, Robert D.</creatorcontrib><title>Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa</title><title>Journal of physical and chemical reference data</title><description>A new fundamental equation explicit in Helmholtz energy for thermodynamic properties of ethylene from the freezing line to 450 K at pressures to 260 MPa is presented. Independent equations for the vapor pressure for the saturated liquid and vapor densities as functions of temperature, and for the ideal gas heat capacity are also included. The fundamental equation was selected from a comprehensive function of 100 terms on the basis of a statistical analysis of the quality of the fit. The coefficients of the fundamental equation were determined by a weighted least‐squares fit to selected P‐ρ‐T data, saturated liquid, and saturated vapor density data to define the phase equilibrium criteria for coexistence, C
v
data, velocity of sound data, and second virial coefficient data. The fundamental equation and the derivative functions for calculating internal energy, enthalpy, entropy, isochoric heat capacity (C
v
), isobaric heat capacity (C
p
), and velocity of sound are included. Tables of thermodynamic properties of ethylene are given for liquid and vapor states within the range of validity of the fundamental equation. The fundamental equation reported here may generally be used to calculate pressures and densities with an uncertainty of ±0.1%, heat capacities within ±3%, and velocity of sound values within ±1%. Comparisons of calculated properties to experimental data are included to verify the accuracy of the formulation.</description><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Elements, mineral and organic compounds</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Theory</subject><subject>Metals and alloys</subject><subject>Mixtures</subject><subject>Thermodynamic properties</subject><issn>0047-2689</issn><issn>1529-7845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvgR8jBgx62Jps_mz1KaVWs2EO9CUs2ndhId7MkUaif3i0rvQheZobHb96Dh9AlJRNKJLulEyFEIdgRGlGRl1mhuDhGI0J4keVSlafoLMYPQkihVD5Cb6sNhMavd61unMHL4DsIyUHE3uJZ2uy20AK2wTc4bQDPA8C3a9_xwvVy8pgLgp-wTv0nxPjZj72aS4Kfl_ocnVi9jXDxu8fodT5bTR-yxcv94_RukRmey5Rxrspac8sZEYxwWde5FtayUgkhBStoXoI1BatZSQwI1p96rbTgQIBKIGyMrgdfE3yMAWzVBdfosKsoqfatVLQaWunRqwHtdDR6a4NujYsHXhVMSLZ3vBmwaFzSyfn2gHz5cLCrurX9j_0T_wNM7Xqk</recordid><startdate>198604</startdate><enddate>198604</enddate><creator>Jahangiri, Majid</creator><creator>Jacobsen, Richard T</creator><creator>Stewart, Richard B.</creator><creator>McCarty, Robert D.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198604</creationdate><title>Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa</title><author>Jahangiri, Majid ; Jacobsen, Richard T ; Stewart, Richard B. ; McCarty, Robert D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-4489ba4f43053046bb2a5ff398556537129efc73b390ce53c73ad8a54e0e16e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Elements, mineral and organic compounds</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Theory</topic><topic>Metals and alloys</topic><topic>Mixtures</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahangiri, Majid</creatorcontrib><creatorcontrib>Jacobsen, Richard T</creatorcontrib><creatorcontrib>Stewart, Richard B.</creatorcontrib><creatorcontrib>McCarty, Robert D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical and chemical reference data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahangiri, Majid</au><au>Jacobsen, Richard T</au><au>Stewart, Richard B.</au><au>McCarty, Robert D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa</atitle><jtitle>Journal of physical and chemical reference data</jtitle><date>1986-04</date><risdate>1986</risdate><volume>15</volume><issue>2</issue><spage>593</spage><epage>734</epage><pages>593-734</pages><issn>0047-2689</issn><eissn>1529-7845</eissn><coden>JPCRBU</coden><abstract>A new fundamental equation explicit in Helmholtz energy for thermodynamic properties of ethylene from the freezing line to 450 K at pressures to 260 MPa is presented. Independent equations for the vapor pressure for the saturated liquid and vapor densities as functions of temperature, and for the ideal gas heat capacity are also included. The fundamental equation was selected from a comprehensive function of 100 terms on the basis of a statistical analysis of the quality of the fit. The coefficients of the fundamental equation were determined by a weighted least‐squares fit to selected P‐ρ‐T data, saturated liquid, and saturated vapor density data to define the phase equilibrium criteria for coexistence, C
v
data, velocity of sound data, and second virial coefficient data. The fundamental equation and the derivative functions for calculating internal energy, enthalpy, entropy, isochoric heat capacity (C
v
), isobaric heat capacity (C
p
), and velocity of sound are included. Tables of thermodynamic properties of ethylene are given for liquid and vapor states within the range of validity of the fundamental equation. The fundamental equation reported here may generally be used to calculate pressures and densities with an uncertainty of ±0.1%, heat capacities within ±3%, and velocity of sound values within ±1%. Comparisons of calculated properties to experimental data are included to verify the accuracy of the formulation.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.555753</doi><tpages>142</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2689 |
ispartof | Journal of physical and chemical reference data, 1986-04, Vol.15 (2), p.593-734 |
issn | 0047-2689 1529-7845 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_555753 |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Chemical thermodynamics Chemistry Elements, mineral and organic compounds Exact sciences and technology General and physical chemistry General. Theory Metals and alloys Mixtures Thermodynamic properties |
title | Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20Properties%20of%20Ethylene%20from%20the%20Freezing%20Line%20to%20450%20K%20at%20Pressures%20to%20260%20MPa&rft.jtitle=Journal%20of%20physical%20and%20chemical%20reference%20data&rft.au=Jahangiri,%20Majid&rft.date=1986-04&rft.volume=15&rft.issue=2&rft.spage=593&rft.epage=734&rft.pages=593-734&rft.issn=0047-2689&rft.eissn=1529-7845&rft.coden=JPCRBU&rft_id=info:doi/10.1063/1.555753&rft_dat=%3Cscitation_cross%3Ejpr%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |