Imaginary parts of Stark–Wannier resonances
We consider a one-dimensional Stark–Wannier Hamiltonian, H=−d 2 /dx 2 +p(x)−εx, x∈ R , where p is a smooth periodic, finite-gap potential, and ε>0 is small enough. We compute rigorously the imaginary parts of the spectral resonances. For this purpose we develop some related elements of the adiaba...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1998-05, Vol.39 (5), p.2520-2550 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2550 |
---|---|
container_issue | 5 |
container_start_page | 2520 |
container_title | Journal of mathematical physics |
container_volume | 39 |
creator | Buslaev, Vladimir Grigis, Alain |
description | We consider a one-dimensional Stark–Wannier Hamiltonian,
H=−d
2
/dx
2
+p(x)−εx,
x∈
R
,
where
p
is a smooth periodic, finite-gap potential, and
ε>0
is small enough. We compute rigorously the imaginary parts of the spectral resonances. For this purpose we develop some related elements of the adiabatic approach to the equations of the form
−ψ
″
+p(x)ψ+q(εx)ψ=Eψ,
ε→0. |
doi_str_mv | 10.1063/1.532406 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_532406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d1cceb14c345e0d9997796b50f3866c2394c9845e26bc4fd041882fe526beb0c3</originalsourceid><addsrcrecordid>eNqdj89KxDAYxIMoWFfBR-hRD1m__GmaHGXRdWHBg4rHkH5NpOqmJSmCN9_BN_RJrFR8AE_DMD-GGUJOGSwZKHHBlpXgEtQeKRhoQ2tV6X1SAHBOudT6kBzl_AzAmJayIHSzc09ddOm9HFwac9mH8m506eXr4_PRxdj5VCaf--gi-nxMDoJ7zf7kVxfk4frqfnVDt7frzepyS5EbMdKWIfqGSRSy8tAaY-raqKaCILRSyIWRaPSUcdWgDC1IpjUPvpq8bwDFgpzNvZj6nJMPdkjdbhppGdifm5bZ-eaEns9oxm50Y9fHf7Fvffrj7NAG8Q0TQGBB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Imaginary parts of Stark–Wannier resonances</title><source>AIP Digital Archive</source><creator>Buslaev, Vladimir ; Grigis, Alain</creator><creatorcontrib>Buslaev, Vladimir ; Grigis, Alain</creatorcontrib><description>We consider a one-dimensional Stark–Wannier Hamiltonian,
H=−d
2
/dx
2
+p(x)−εx,
x∈
R
,
where
p
is a smooth periodic, finite-gap potential, and
ε>0
is small enough. We compute rigorously the imaginary parts of the spectral resonances. For this purpose we develop some related elements of the adiabatic approach to the equations of the form
−ψ
″
+p(x)ψ+q(εx)ψ=Eψ,
ε→0.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.532406</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1998-05, Vol.39 (5), p.2520-2550</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d1cceb14c345e0d9997796b50f3866c2394c9845e26bc4fd041882fe526beb0c3</citedby><cites>FETCH-LOGICAL-c293t-d1cceb14c345e0d9997796b50f3866c2394c9845e26bc4fd041882fe526beb0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.532406$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27904,27905,76138</link.rule.ids></links><search><creatorcontrib>Buslaev, Vladimir</creatorcontrib><creatorcontrib>Grigis, Alain</creatorcontrib><title>Imaginary parts of Stark–Wannier resonances</title><title>Journal of mathematical physics</title><description>We consider a one-dimensional Stark–Wannier Hamiltonian,
H=−d
2
/dx
2
+p(x)−εx,
x∈
R
,
where
p
is a smooth periodic, finite-gap potential, and
ε>0
is small enough. We compute rigorously the imaginary parts of the spectral resonances. For this purpose we develop some related elements of the adiabatic approach to the equations of the form
−ψ
″
+p(x)ψ+q(εx)ψ=Eψ,
ε→0.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqdj89KxDAYxIMoWFfBR-hRD1m__GmaHGXRdWHBg4rHkH5NpOqmJSmCN9_BN_RJrFR8AE_DMD-GGUJOGSwZKHHBlpXgEtQeKRhoQ2tV6X1SAHBOudT6kBzl_AzAmJayIHSzc09ddOm9HFwac9mH8m506eXr4_PRxdj5VCaf--gi-nxMDoJ7zf7kVxfk4frqfnVDt7frzepyS5EbMdKWIfqGSRSy8tAaY-raqKaCILRSyIWRaPSUcdWgDC1IpjUPvpq8bwDFgpzNvZj6nJMPdkjdbhppGdifm5bZ-eaEns9oxm50Y9fHf7Fvffrj7NAG8Q0TQGBB</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Buslaev, Vladimir</creator><creator>Grigis, Alain</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980501</creationdate><title>Imaginary parts of Stark–Wannier resonances</title><author>Buslaev, Vladimir ; Grigis, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d1cceb14c345e0d9997796b50f3866c2394c9845e26bc4fd041882fe526beb0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buslaev, Vladimir</creatorcontrib><creatorcontrib>Grigis, Alain</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buslaev, Vladimir</au><au>Grigis, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaginary parts of Stark–Wannier resonances</atitle><jtitle>Journal of mathematical physics</jtitle><date>1998-05-01</date><risdate>1998</risdate><volume>39</volume><issue>5</issue><spage>2520</spage><epage>2550</epage><pages>2520-2550</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider a one-dimensional Stark–Wannier Hamiltonian,
H=−d
2
/dx
2
+p(x)−εx,
x∈
R
,
where
p
is a smooth periodic, finite-gap potential, and
ε>0
is small enough. We compute rigorously the imaginary parts of the spectral resonances. For this purpose we develop some related elements of the adiabatic approach to the equations of the form
−ψ
″
+p(x)ψ+q(εx)ψ=Eψ,
ε→0.</abstract><doi>10.1063/1.532406</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1998-05, Vol.39 (5), p.2520-2550 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_532406 |
source | AIP Digital Archive |
title | Imaginary parts of Stark–Wannier resonances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaginary%20parts%20of%20Stark%E2%80%93Wannier%20resonances&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Buslaev,%20Vladimir&rft.date=1998-05-01&rft.volume=39&rft.issue=5&rft.spage=2520&rft.epage=2550&rft.pages=2520-2550&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.532406&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |