On toroidal Green’s functions

Green’s functions are valuable analytical tools for solving a myriad of boundary-value problems in mathematical physics. Here, Green’s functions of the Laplacian and biharmonic operators are derived for a three-dimensional toroidal domain. In some sense, the former result may be regarded as “standar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1997-07, Vol.38 (7), p.3679-3691
1. Verfasser: Bates, Jason W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3691
container_issue 7
container_start_page 3679
container_title Journal of mathematical physics
container_volume 38
creator Bates, Jason W.
description Green’s functions are valuable analytical tools for solving a myriad of boundary-value problems in mathematical physics. Here, Green’s functions of the Laplacian and biharmonic operators are derived for a three-dimensional toroidal domain. In some sense, the former result may be regarded as “standard,” but the latter is most certainly not. It is shown that both functions can be constructed to have zero value on a specified toroidal surface with a circular cross section. Additionally, the Green’s function of the biharmonic operator may be chosen to have the property that its normal derivative also vanishes there. A “torsional” Green’s function is derived for each operator which is useful in solving some boundary-value problems involving axisymmetric vector equations. Using this approach, the magnetic vector potential of a wire loop is computed as a simple example.
doi_str_mv 10.1063/1.532061
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_532061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-59668701f49360052f5cd3167635cb55b9015a6b619db119ff8ac402fc5e34973</originalsourceid><addsrcrecordid>eNp9z8FKxDAUBdAgCtZR8A_sUhcZ30vy0mQpg47CwGx0HdK0gcrYDkkV3Pkb_p5fokNlNoKruzlc7mXsHGGOoOU1zkkK0HjACgRjeaXJHLICQAgulDHH7CTnZwBEo1TBLtZ9OQ5p6Bq_KZepbfuvj89cxtc-jN3Q51N2FP0mt2e_OWNPd7ePi3u-Wi8fFjcrHiTZkZPV2lSAUVmpAUhECo1EXWlJoSaqLSB5XWu0TY1oYzQ-KBAxUCuVreSMXU69IQ05pza6bepefHp3CG53zKGbjv3Qq4nm0I1-t3Jv34a0d27bxP_sn95vMGJZxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On toroidal Green’s functions</title><source>AIP Digital Archive</source><creator>Bates, Jason W.</creator><creatorcontrib>Bates, Jason W.</creatorcontrib><description>Green’s functions are valuable analytical tools for solving a myriad of boundary-value problems in mathematical physics. Here, Green’s functions of the Laplacian and biharmonic operators are derived for a three-dimensional toroidal domain. In some sense, the former result may be regarded as “standard,” but the latter is most certainly not. It is shown that both functions can be constructed to have zero value on a specified toroidal surface with a circular cross section. Additionally, the Green’s function of the biharmonic operator may be chosen to have the property that its normal derivative also vanishes there. A “torsional” Green’s function is derived for each operator which is useful in solving some boundary-value problems involving axisymmetric vector equations. Using this approach, the magnetic vector potential of a wire loop is computed as a simple example.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.532061</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1997-07, Vol.38 (7), p.3679-3691</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-59668701f49360052f5cd3167635cb55b9015a6b619db119ff8ac402fc5e34973</citedby><cites>FETCH-LOGICAL-c359t-59668701f49360052f5cd3167635cb55b9015a6b619db119ff8ac402fc5e34973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.532061$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1559,27924,27925,76390</link.rule.ids></links><search><creatorcontrib>Bates, Jason W.</creatorcontrib><title>On toroidal Green’s functions</title><title>Journal of mathematical physics</title><description>Green’s functions are valuable analytical tools for solving a myriad of boundary-value problems in mathematical physics. Here, Green’s functions of the Laplacian and biharmonic operators are derived for a three-dimensional toroidal domain. In some sense, the former result may be regarded as “standard,” but the latter is most certainly not. It is shown that both functions can be constructed to have zero value on a specified toroidal surface with a circular cross section. Additionally, the Green’s function of the biharmonic operator may be chosen to have the property that its normal derivative also vanishes there. A “torsional” Green’s function is derived for each operator which is useful in solving some boundary-value problems involving axisymmetric vector equations. Using this approach, the magnetic vector potential of a wire loop is computed as a simple example.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp9z8FKxDAUBdAgCtZR8A_sUhcZ30vy0mQpg47CwGx0HdK0gcrYDkkV3Pkb_p5fokNlNoKruzlc7mXsHGGOoOU1zkkK0HjACgRjeaXJHLICQAgulDHH7CTnZwBEo1TBLtZ9OQ5p6Bq_KZepbfuvj89cxtc-jN3Q51N2FP0mt2e_OWNPd7ePi3u-Wi8fFjcrHiTZkZPV2lSAUVmpAUhECo1EXWlJoSaqLSB5XWu0TY1oYzQ-KBAxUCuVreSMXU69IQ05pza6bepefHp3CG53zKGbjv3Qq4nm0I1-t3Jv34a0d27bxP_sn95vMGJZxg</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>Bates, Jason W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970701</creationdate><title>On toroidal Green’s functions</title><author>Bates, Jason W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-59668701f49360052f5cd3167635cb55b9015a6b619db119ff8ac402fc5e34973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bates, Jason W.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bates, Jason W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On toroidal Green’s functions</atitle><jtitle>Journal of mathematical physics</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>38</volume><issue>7</issue><spage>3679</spage><epage>3691</epage><pages>3679-3691</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Green’s functions are valuable analytical tools for solving a myriad of boundary-value problems in mathematical physics. Here, Green’s functions of the Laplacian and biharmonic operators are derived for a three-dimensional toroidal domain. In some sense, the former result may be regarded as “standard,” but the latter is most certainly not. It is shown that both functions can be constructed to have zero value on a specified toroidal surface with a circular cross section. Additionally, the Green’s function of the biharmonic operator may be chosen to have the property that its normal derivative also vanishes there. A “torsional” Green’s function is derived for each operator which is useful in solving some boundary-value problems involving axisymmetric vector equations. Using this approach, the magnetic vector potential of a wire loop is computed as a simple example.</abstract><doi>10.1063/1.532061</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1997-07, Vol.38 (7), p.3679-3691
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_532061
source AIP Digital Archive
title On toroidal Green’s functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20toroidal%20Green%E2%80%99s%20functions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Bates,%20Jason%20W.&rft.date=1997-07-01&rft.volume=38&rft.issue=7&rft.spage=3679&rft.epage=3691&rft.pages=3679-3691&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.532061&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true