Perturbation theory and the classical limit of quantum mechanics
We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method intro...
Gespeichert in:
Veröffentlicht in: | Journal of Mathematical Physics 1997-06, Vol.38 (6), p.2899-2921 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2921 |
---|---|
container_issue | 6 |
container_start_page | 2899 |
container_title | Journal of Mathematical Physics |
container_volume | 38 |
creator | McRae, S. M. Vrscay, E. R. |
description | We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method introduced by Bhaumik and Dutta-Roy [J. Math. Phys. 16, 1131 (1975)] and resolve several complications that arise when this method is extended to second order. A classical limit for coherent states used by the above authors is then applied to the quantum perturbation expansions and, to second order, the classical Poincaré–Lindstedt series is retrieved. We conclude with an investigation of the connection between the classical limits of time dependent and time independent perturbation theories, respectively. |
doi_str_mv | 10.1063/1.532025 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_532025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f086709ce800d75a007c454559ebfa8dfd81859a496b00bdca3e3c0e8bd8fd8e3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6r4E-INz10nTRNm96UZf2ABT3oOaT5YCNtsyapsP_erpW9CJ5mYB5eZgahSwILAiW9JQtGc8jZEZoR4HVWlYwfoxlAnmd5wfkpOovxA4AQXhQzdPdqQhpCI5PzPU4b48MOy17vW6xaGaNTssWt61zC3uLPQfZp6HBn1Eb2TsVzdGJlG83Fb52j94fV2_IpW788Pi_v15minKXMAi8rqJXhALpiEqBSBSsYq01jJddWc8JZLYu6bAAarSQ1VIHhjebjzNA5uppyfUxOROXSuIHyfW9UEgxomcNoriejgo8xGCu2wXUy7AQBsf-OIGL6zkhvJrpP-jn-YL98ODix1fY_-yf3Gzskcrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Perturbation theory and the classical limit of quantum mechanics</title><source>AIP Digital Archive</source><creator>McRae, S. M. ; Vrscay, E. R.</creator><creatorcontrib>McRae, S. M. ; Vrscay, E. R.</creatorcontrib><description>We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method introduced by Bhaumik and Dutta-Roy [J. Math. Phys. 16, 1131 (1975)] and resolve several complications that arise when this method is extended to second order. A classical limit for coherent states used by the above authors is then applied to the quantum perturbation expansions and, to second order, the classical Poincaré–Lindstedt series is retrieved. We conclude with an investigation of the connection between the classical limits of time dependent and time independent perturbation theories, respectively.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.532025</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>United States</publisher><subject>ANHARMONIC OSCILLATORS ; HARMONIC OSCILLATORS ; PERTURBATION THEORY ; PHYSICS ; QUANTUM MECHANICS ; TIME DEPENDENCE</subject><ispartof>Journal of Mathematical Physics, 1997-06, Vol.38 (6), p.2899-2921</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f086709ce800d75a007c454559ebfa8dfd81859a496b00bdca3e3c0e8bd8fd8e3</citedby><cites>FETCH-LOGICAL-c385t-f086709ce800d75a007c454559ebfa8dfd81859a496b00bdca3e3c0e8bd8fd8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.532025$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1558,27923,27924,76161</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/503620$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McRae, S. M.</creatorcontrib><creatorcontrib>Vrscay, E. R.</creatorcontrib><title>Perturbation theory and the classical limit of quantum mechanics</title><title>Journal of Mathematical Physics</title><description>We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method introduced by Bhaumik and Dutta-Roy [J. Math. Phys. 16, 1131 (1975)] and resolve several complications that arise when this method is extended to second order. A classical limit for coherent states used by the above authors is then applied to the quantum perturbation expansions and, to second order, the classical Poincaré–Lindstedt series is retrieved. We conclude with an investigation of the connection between the classical limits of time dependent and time independent perturbation theories, respectively.</description><subject>ANHARMONIC OSCILLATORS</subject><subject>HARMONIC OSCILLATORS</subject><subject>PERTURBATION THEORY</subject><subject>PHYSICS</subject><subject>QUANTUM MECHANICS</subject><subject>TIME DEPENDENCE</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6r4E-INz10nTRNm96UZf2ABT3oOaT5YCNtsyapsP_erpW9CJ5mYB5eZgahSwILAiW9JQtGc8jZEZoR4HVWlYwfoxlAnmd5wfkpOovxA4AQXhQzdPdqQhpCI5PzPU4b48MOy17vW6xaGaNTssWt61zC3uLPQfZp6HBn1Eb2TsVzdGJlG83Fb52j94fV2_IpW788Pi_v15minKXMAi8rqJXhALpiEqBSBSsYq01jJddWc8JZLYu6bAAarSQ1VIHhjebjzNA5uppyfUxOROXSuIHyfW9UEgxomcNoriejgo8xGCu2wXUy7AQBsf-OIGL6zkhvJrpP-jn-YL98ODix1fY_-yf3Gzskcrw</recordid><startdate>19970601</startdate><enddate>19970601</enddate><creator>McRae, S. M.</creator><creator>Vrscay, E. R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19970601</creationdate><title>Perturbation theory and the classical limit of quantum mechanics</title><author>McRae, S. M. ; Vrscay, E. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f086709ce800d75a007c454559ebfa8dfd81859a496b00bdca3e3c0e8bd8fd8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ANHARMONIC OSCILLATORS</topic><topic>HARMONIC OSCILLATORS</topic><topic>PERTURBATION THEORY</topic><topic>PHYSICS</topic><topic>QUANTUM MECHANICS</topic><topic>TIME DEPENDENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McRae, S. M.</creatorcontrib><creatorcontrib>Vrscay, E. R.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Mathematical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McRae, S. M.</au><au>Vrscay, E. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation theory and the classical limit of quantum mechanics</atitle><jtitle>Journal of Mathematical Physics</jtitle><date>1997-06-01</date><risdate>1997</risdate><volume>38</volume><issue>6</issue><spage>2899</spage><epage>2921</epage><pages>2899-2921</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method introduced by Bhaumik and Dutta-Roy [J. Math. Phys. 16, 1131 (1975)] and resolve several complications that arise when this method is extended to second order. A classical limit for coherent states used by the above authors is then applied to the quantum perturbation expansions and, to second order, the classical Poincaré–Lindstedt series is retrieved. We conclude with an investigation of the connection between the classical limits of time dependent and time independent perturbation theories, respectively.</abstract><cop>United States</cop><doi>10.1063/1.532025</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of Mathematical Physics, 1997-06, Vol.38 (6), p.2899-2921 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_532025 |
source | AIP Digital Archive |
subjects | ANHARMONIC OSCILLATORS HARMONIC OSCILLATORS PERTURBATION THEORY PHYSICS QUANTUM MECHANICS TIME DEPENDENCE |
title | Perturbation theory and the classical limit of quantum mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation%20theory%20and%20the%20classical%20limit%20of%20quantum%20mechanics&rft.jtitle=Journal%20of%20Mathematical%20Physics&rft.au=McRae,%20S.%20M.&rft.date=1997-06-01&rft.volume=38&rft.issue=6&rft.spage=2899&rft.epage=2921&rft.pages=2899-2921&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.532025&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |