Perturbation theory and the classical limit of quantum mechanics

We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method intro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematical Physics 1997-06, Vol.38 (6), p.2899-2921
Hauptverfasser: McRae, S. M., Vrscay, E. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2921
container_issue 6
container_start_page 2899
container_title Journal of Mathematical Physics
container_volume 38
creator McRae, S. M.
Vrscay, E. R.
description We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method introduced by Bhaumik and Dutta-Roy [J. Math. Phys. 16, 1131 (1975)] and resolve several complications that arise when this method is extended to second order. A classical limit for coherent states used by the above authors is then applied to the quantum perturbation expansions and, to second order, the classical Poincaré–Lindstedt series is retrieved. We conclude with an investigation of the connection between the classical limits of time dependent and time independent perturbation theories, respectively.
doi_str_mv 10.1063/1.532025
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_532025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f086709ce800d75a007c454559ebfa8dfd81859a496b00bdca3e3c0e8bd8fd8e3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6r4E-INz10nTRNm96UZf2ABT3oOaT5YCNtsyapsP_erpW9CJ5mYB5eZgahSwILAiW9JQtGc8jZEZoR4HVWlYwfoxlAnmd5wfkpOovxA4AQXhQzdPdqQhpCI5PzPU4b48MOy17vW6xaGaNTssWt61zC3uLPQfZp6HBn1Eb2TsVzdGJlG83Fb52j94fV2_IpW788Pi_v15minKXMAi8rqJXhALpiEqBSBSsYq01jJddWc8JZLYu6bAAarSQ1VIHhjebjzNA5uppyfUxOROXSuIHyfW9UEgxomcNoriejgo8xGCu2wXUy7AQBsf-OIGL6zkhvJrpP-jn-YL98ODix1fY_-yf3Gzskcrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Perturbation theory and the classical limit of quantum mechanics</title><source>AIP Digital Archive</source><creator>McRae, S. M. ; Vrscay, E. R.</creator><creatorcontrib>McRae, S. M. ; Vrscay, E. R.</creatorcontrib><description>We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method introduced by Bhaumik and Dutta-Roy [J. Math. Phys. 16, 1131 (1975)] and resolve several complications that arise when this method is extended to second order. A classical limit for coherent states used by the above authors is then applied to the quantum perturbation expansions and, to second order, the classical Poincaré–Lindstedt series is retrieved. We conclude with an investigation of the connection between the classical limits of time dependent and time independent perturbation theories, respectively.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.532025</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>United States</publisher><subject>ANHARMONIC OSCILLATORS ; HARMONIC OSCILLATORS ; PERTURBATION THEORY ; PHYSICS ; QUANTUM MECHANICS ; TIME DEPENDENCE</subject><ispartof>Journal of Mathematical Physics, 1997-06, Vol.38 (6), p.2899-2921</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f086709ce800d75a007c454559ebfa8dfd81859a496b00bdca3e3c0e8bd8fd8e3</citedby><cites>FETCH-LOGICAL-c385t-f086709ce800d75a007c454559ebfa8dfd81859a496b00bdca3e3c0e8bd8fd8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.532025$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,885,1558,27923,27924,76161</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/503620$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McRae, S. M.</creatorcontrib><creatorcontrib>Vrscay, E. R.</creatorcontrib><title>Perturbation theory and the classical limit of quantum mechanics</title><title>Journal of Mathematical Physics</title><description>We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method introduced by Bhaumik and Dutta-Roy [J. Math. Phys. 16, 1131 (1975)] and resolve several complications that arise when this method is extended to second order. A classical limit for coherent states used by the above authors is then applied to the quantum perturbation expansions and, to second order, the classical Poincaré–Lindstedt series is retrieved. We conclude with an investigation of the connection between the classical limits of time dependent and time independent perturbation theories, respectively.</description><subject>ANHARMONIC OSCILLATORS</subject><subject>HARMONIC OSCILLATORS</subject><subject>PERTURBATION THEORY</subject><subject>PHYSICS</subject><subject>QUANTUM MECHANICS</subject><subject>TIME DEPENDENCE</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6r4E-INz10nTRNm96UZf2ABT3oOaT5YCNtsyapsP_erpW9CJ5mYB5eZgahSwILAiW9JQtGc8jZEZoR4HVWlYwfoxlAnmd5wfkpOovxA4AQXhQzdPdqQhpCI5PzPU4b48MOy17vW6xaGaNTssWt61zC3uLPQfZp6HBn1Eb2TsVzdGJlG83Fb52j94fV2_IpW788Pi_v15minKXMAi8rqJXhALpiEqBSBSsYq01jJddWc8JZLYu6bAAarSQ1VIHhjebjzNA5uppyfUxOROXSuIHyfW9UEgxomcNoriejgo8xGCu2wXUy7AQBsf-OIGL6zkhvJrpP-jn-YL98ODix1fY_-yf3Gzskcrw</recordid><startdate>19970601</startdate><enddate>19970601</enddate><creator>McRae, S. M.</creator><creator>Vrscay, E. R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19970601</creationdate><title>Perturbation theory and the classical limit of quantum mechanics</title><author>McRae, S. M. ; Vrscay, E. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f086709ce800d75a007c454559ebfa8dfd81859a496b00bdca3e3c0e8bd8fd8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ANHARMONIC OSCILLATORS</topic><topic>HARMONIC OSCILLATORS</topic><topic>PERTURBATION THEORY</topic><topic>PHYSICS</topic><topic>QUANTUM MECHANICS</topic><topic>TIME DEPENDENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McRae, S. M.</creatorcontrib><creatorcontrib>Vrscay, E. R.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Mathematical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McRae, S. M.</au><au>Vrscay, E. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation theory and the classical limit of quantum mechanics</atitle><jtitle>Journal of Mathematical Physics</jtitle><date>1997-06-01</date><risdate>1997</risdate><volume>38</volume><issue>6</issue><spage>2899</spage><epage>2921</epage><pages>2899-2921</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider the classical limit of quantum mechanics from the viewpoint of perturbation theory. The main focus is time dependent perturbation theory, in particular, the time evolution of a harmonic oscillator coherent state in an anharmonic potential. We explore in detail a perturbation method introduced by Bhaumik and Dutta-Roy [J. Math. Phys. 16, 1131 (1975)] and resolve several complications that arise when this method is extended to second order. A classical limit for coherent states used by the above authors is then applied to the quantum perturbation expansions and, to second order, the classical Poincaré–Lindstedt series is retrieved. We conclude with an investigation of the connection between the classical limits of time dependent and time independent perturbation theories, respectively.</abstract><cop>United States</cop><doi>10.1063/1.532025</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of Mathematical Physics, 1997-06, Vol.38 (6), p.2899-2921
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_532025
source AIP Digital Archive
subjects ANHARMONIC OSCILLATORS
HARMONIC OSCILLATORS
PERTURBATION THEORY
PHYSICS
QUANTUM MECHANICS
TIME DEPENDENCE
title Perturbation theory and the classical limit of quantum mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation%20theory%20and%20the%20classical%20limit%20of%20quantum%20mechanics&rft.jtitle=Journal%20of%20Mathematical%20Physics&rft.au=McRae,%20S.%20M.&rft.date=1997-06-01&rft.volume=38&rft.issue=6&rft.spage=2899&rft.epage=2921&rft.pages=2899-2921&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.532025&rft_dat=%3Cscitation_osti_%3Ejmp%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true