Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation
To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1995-04, Vol.36 (4), p.1825-1833 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1833 |
---|---|
container_issue | 4 |
container_start_page | 1825 |
container_title | Journal of mathematical physics |
container_volume | 36 |
creator | Nettleton, R. E. |
description | To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux Laplacian, the problem of nonhyperbolicity and infinite phase velocity recurs. One approach postulates an infinite hierarchy of coupled equations, each of which describes time evolution of a flux appearing in the preceding hierarchy equation. This is shown to disagree in the high‐frequency limit with an evolution equation derived by projection operators from the Liouville equation, in which memory and nonlocal effects are represented by integrals over time and space. Nonlocal effects disappear in the infinite‐frequency limit of the latter, but not of the former. |
doi_str_mv | 10.1063/1.531088 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_531088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5a45262fbe92c07cf962bc5bd16e2651eb2739afec885c2d5bda25a094e283303</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvgR8hRD1uT2c02e5Tin4LgRc9LNp3YyHZ3naQL_famVnoRPD2Y95s3w2PsWoqZFGV-J2cql0LrEzZJUmXzUulTNhECIINC63N2EcKnEFLqopiwsOwifpBpOX5tTfR9F_iIFLaB--RQl5zRkDdNi_sRj2vkAQ3ZNXc9cdNxdA5t9CO2O77eDUhN33q7B2mTtiOZLgw9xeOFS3bmTBvw6len7P3x4W3xnL28Pi0X9y-ZhUrFTJlCQQmuwQqsmFtXldBY1axkiVAqiQ3M88qk41orC6vkGFBGVAWCznORT9nNIddSHwKhqwfyG0O7Wop6X1Yt60NZCb09oMH6-PPkkR17OnL1sHL_sX9yvwH25Xr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation</title><source>AIP Digital Archive</source><creator>Nettleton, R. E.</creator><creatorcontrib>Nettleton, R. E.</creatorcontrib><description>To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux Laplacian, the problem of nonhyperbolicity and infinite phase velocity recurs. One approach postulates an infinite hierarchy of coupled equations, each of which describes time evolution of a flux appearing in the preceding hierarchy equation. This is shown to disagree in the high‐frequency limit with an evolution equation derived by projection operators from the Liouville equation, in which memory and nonlocal effects are represented by integrals over time and space. Nonlocal effects disappear in the infinite‐frequency limit of the latter, but not of the former.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.531088</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1995-04, Vol.36 (4), p.1825-1833</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5a45262fbe92c07cf962bc5bd16e2651eb2739afec885c2d5bda25a094e283303</citedby><cites>FETCH-LOGICAL-c295t-5a45262fbe92c07cf962bc5bd16e2651eb2739afec885c2d5bda25a094e283303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.531088$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27903,27904,76136</link.rule.ids></links><search><creatorcontrib>Nettleton, R. E.</creatorcontrib><title>Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation</title><title>Journal of mathematical physics</title><description>To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux Laplacian, the problem of nonhyperbolicity and infinite phase velocity recurs. One approach postulates an infinite hierarchy of coupled equations, each of which describes time evolution of a flux appearing in the preceding hierarchy equation. This is shown to disagree in the high‐frequency limit with an evolution equation derived by projection operators from the Liouville equation, in which memory and nonlocal effects are represented by integrals over time and space. Nonlocal effects disappear in the infinite‐frequency limit of the latter, but not of the former.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvgR8hRD1uT2c02e5Tin4LgRc9LNp3YyHZ3naQL_famVnoRPD2Y95s3w2PsWoqZFGV-J2cql0LrEzZJUmXzUulTNhECIINC63N2EcKnEFLqopiwsOwifpBpOX5tTfR9F_iIFLaB--RQl5zRkDdNi_sRj2vkAQ3ZNXc9cdNxdA5t9CO2O77eDUhN33q7B2mTtiOZLgw9xeOFS3bmTBvw6len7P3x4W3xnL28Pi0X9y-ZhUrFTJlCQQmuwQqsmFtXldBY1axkiVAqiQ3M88qk41orC6vkGFBGVAWCznORT9nNIddSHwKhqwfyG0O7Wop6X1Yt60NZCb09oMH6-PPkkR17OnL1sHL_sX9yvwH25Xr8</recordid><startdate>19950401</startdate><enddate>19950401</enddate><creator>Nettleton, R. E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950401</creationdate><title>Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation</title><author>Nettleton, R. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5a45262fbe92c07cf962bc5bd16e2651eb2739afec885c2d5bda25a094e283303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nettleton, R. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nettleton, R. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation</atitle><jtitle>Journal of mathematical physics</jtitle><date>1995-04-01</date><risdate>1995</risdate><volume>36</volume><issue>4</issue><spage>1825</spage><epage>1833</epage><pages>1825-1833</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux Laplacian, the problem of nonhyperbolicity and infinite phase velocity recurs. One approach postulates an infinite hierarchy of coupled equations, each of which describes time evolution of a flux appearing in the preceding hierarchy equation. This is shown to disagree in the high‐frequency limit with an evolution equation derived by projection operators from the Liouville equation, in which memory and nonlocal effects are represented by integrals over time and space. Nonlocal effects disappear in the infinite‐frequency limit of the latter, but not of the former.</abstract><doi>10.1063/1.531088</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1995-04, Vol.36 (4), p.1825-1833 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_531088 |
source | AIP Digital Archive |
title | Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20equations%20versus%20internal%20variables%20in%20the%20search%20for%20an%20effectively%20hyperbolic%20thermal%20transport%20equation&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Nettleton,%20R.%20E.&rft.date=1995-04-01&rft.volume=36&rft.issue=4&rft.spage=1825&rft.epage=1833&rft.pages=1825-1833&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.531088&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |