Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation

To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1995-04, Vol.36 (4), p.1825-1833
1. Verfasser: Nettleton, R. E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1833
container_issue 4
container_start_page 1825
container_title Journal of mathematical physics
container_volume 36
creator Nettleton, R. E.
description To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux Laplacian, the problem of nonhyperbolicity and infinite phase velocity recurs. One approach postulates an infinite hierarchy of coupled equations, each of which describes time evolution of a flux appearing in the preceding hierarchy equation. This is shown to disagree in the high‐frequency limit with an evolution equation derived by projection operators from the Liouville equation, in which memory and nonlocal effects are represented by integrals over time and space. Nonlocal effects disappear in the infinite‐frequency limit of the latter, but not of the former.
doi_str_mv 10.1063/1.531088
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_531088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5a45262fbe92c07cf962bc5bd16e2651eb2739afec885c2d5bda25a094e283303</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvgR8hRD1uT2c02e5Tin4LgRc9LNp3YyHZ3naQL_famVnoRPD2Y95s3w2PsWoqZFGV-J2cql0LrEzZJUmXzUulTNhECIINC63N2EcKnEFLqopiwsOwifpBpOX5tTfR9F_iIFLaB--RQl5zRkDdNi_sRj2vkAQ3ZNXc9cdNxdA5t9CO2O77eDUhN33q7B2mTtiOZLgw9xeOFS3bmTBvw6len7P3x4W3xnL28Pi0X9y-ZhUrFTJlCQQmuwQqsmFtXldBY1axkiVAqiQ3M88qk41orC6vkGFBGVAWCznORT9nNIddSHwKhqwfyG0O7Wop6X1Yt60NZCb09oMH6-PPkkR17OnL1sHL_sX9yvwH25Xr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation</title><source>AIP Digital Archive</source><creator>Nettleton, R. E.</creator><creatorcontrib>Nettleton, R. E.</creatorcontrib><description>To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux Laplacian, the problem of nonhyperbolicity and infinite phase velocity recurs. One approach postulates an infinite hierarchy of coupled equations, each of which describes time evolution of a flux appearing in the preceding hierarchy equation. This is shown to disagree in the high‐frequency limit with an evolution equation derived by projection operators from the Liouville equation, in which memory and nonlocal effects are represented by integrals over time and space. Nonlocal effects disappear in the infinite‐frequency limit of the latter, but not of the former.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.531088</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1995-04, Vol.36 (4), p.1825-1833</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5a45262fbe92c07cf962bc5bd16e2651eb2739afec885c2d5bda25a094e283303</citedby><cites>FETCH-LOGICAL-c295t-5a45262fbe92c07cf962bc5bd16e2651eb2739afec885c2d5bda25a094e283303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.531088$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27903,27904,76136</link.rule.ids></links><search><creatorcontrib>Nettleton, R. E.</creatorcontrib><title>Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation</title><title>Journal of mathematical physics</title><description>To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux Laplacian, the problem of nonhyperbolicity and infinite phase velocity recurs. One approach postulates an infinite hierarchy of coupled equations, each of which describes time evolution of a flux appearing in the preceding hierarchy equation. This is shown to disagree in the high‐frequency limit with an evolution equation derived by projection operators from the Liouville equation, in which memory and nonlocal effects are represented by integrals over time and space. Nonlocal effects disappear in the infinite‐frequency limit of the latter, but not of the former.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvgR8hRD1uT2c02e5Tin4LgRc9LNp3YyHZ3naQL_famVnoRPD2Y95s3w2PsWoqZFGV-J2cql0LrEzZJUmXzUulTNhECIINC63N2EcKnEFLqopiwsOwifpBpOX5tTfR9F_iIFLaB--RQl5zRkDdNi_sRj2vkAQ3ZNXc9cdNxdA5t9CO2O77eDUhN33q7B2mTtiOZLgw9xeOFS3bmTBvw6len7P3x4W3xnL28Pi0X9y-ZhUrFTJlCQQmuwQqsmFtXldBY1axkiVAqiQ3M88qk41orC6vkGFBGVAWCznORT9nNIddSHwKhqwfyG0O7Wop6X1Yt60NZCb09oMH6-PPkkR17OnL1sHL_sX9yvwH25Xr8</recordid><startdate>19950401</startdate><enddate>19950401</enddate><creator>Nettleton, R. E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950401</creationdate><title>Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation</title><author>Nettleton, R. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5a45262fbe92c07cf962bc5bd16e2651eb2739afec885c2d5bda25a094e283303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nettleton, R. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nettleton, R. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation</atitle><jtitle>Journal of mathematical physics</jtitle><date>1995-04-01</date><risdate>1995</risdate><volume>36</volume><issue>4</issue><spage>1825</spage><epage>1833</epage><pages>1825-1833</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>To obtain a thermal wave equation predicting finite phase velocity in the infinite‐frequency limit Grad’s 13‐moment method and extended thermodynamics have added a term linear in the time derivative of the heat flux to Fourier’s law. When nonlocal effects are added via a term linear in the heat flux Laplacian, the problem of nonhyperbolicity and infinite phase velocity recurs. One approach postulates an infinite hierarchy of coupled equations, each of which describes time evolution of a flux appearing in the preceding hierarchy equation. This is shown to disagree in the high‐frequency limit with an evolution equation derived by projection operators from the Liouville equation, in which memory and nonlocal effects are represented by integrals over time and space. Nonlocal effects disappear in the infinite‐frequency limit of the latter, but not of the former.</abstract><doi>10.1063/1.531088</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1995-04, Vol.36 (4), p.1825-1833
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_531088
source AIP Digital Archive
title Integral equations versus internal variables in the search for an effectively hyperbolic thermal transport equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20equations%20versus%20internal%20variables%20in%20the%20search%20for%20an%20effectively%20hyperbolic%20thermal%20transport%20equation&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Nettleton,%20R.%20E.&rft.date=1995-04-01&rft.volume=36&rft.issue=4&rft.spage=1825&rft.epage=1833&rft.pages=1825-1833&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.531088&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true