Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential
The information entropy of the harmonic oscillator potential V(x)=1/2λx 2 in both position and momentum spaces can be expressed in terms of the so‐called ‘‘entropy of Hermite polynomials,’’ i.e., the quantity S n (H):= −∫−∞ +∞ H 2 n (x)log H 2 n (x) e −x 2 dx. These polynomials are instances of the...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1995-08, Vol.36 (8), p.4106-4118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4118 |
---|---|
container_issue | 8 |
container_start_page | 4106 |
container_title | Journal of mathematical physics |
container_volume | 36 |
creator | Van Assche, W. Yáñez, R. J. Dehesa, J. S. |
description | The information entropy of the harmonic oscillator potential V(x)=1/2λx
2 in both position and momentum spaces can be expressed in terms of the so‐called ‘‘entropy of Hermite polynomials,’’ i.e., the quantity S
n
(H):= −∫−∞
+∞
H
2
n
(x)log H
2
n
(x) e
−x
2
dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(−‖x‖
m
), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et
al. [J. Math. Phys. 35, 4423–4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by S
ρ and S
γ, respectively. Briefly, it is shown that, for large values of n, S
ρ+1/2logλ≂log(π√2n/e)+o(1) and S
γ−1/2log λ≂log(π√2n/e)+o(1), so that S
ρ+S
γ≂log(2π2
n/e
2)+o(1) in agreement with the generalized indetermination relation of Byalinicki‐Birula and Mycielski [Commun. Math. Phys. 44, 129–132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result. |
doi_str_mv | 10.1063/1.530949 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_530949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-449ed94ac08d37500d82acdae1cf4d614797895d01ab0e717bdae052827f88513</originalsourceid><addsrcrecordid>eNqdkEFOwzAQRS0EEqUgcQQvYZEyTuzGXqKqLUiV2MA6cmOnMUoykW2oenvcFnEAVn8xT0_zPyH3DGYM5sUTm4kCFFcXZMJAqqycC3lJJgB5nuVcymtyE8InAGOS8wkJyyF6HA8UG4o-trjDQXd0xO4wYO90F-jexZauvP0ydG_dro2B6sFQNzToex0dDtSeJM6Goya2lrba9zi4mmKoXdfpiD45Y-KS8pZcNUls735zSj5Wy_fFS7Z5W78unjdZnSsRM86VNYrrGqQpSgFgZK5roy2rG27mjJeqlEoYYHoLtmTlNt1A5DIvGykFK6bk4eytPYbgbVON3vXaHyoG1XGsilXnsRL6eEbTu_HU6V_sN_o_rhpNU_wAruR6zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential</title><source>AIP Digital Archive</source><creator>Van Assche, W. ; Yáñez, R. J. ; Dehesa, J. S.</creator><creatorcontrib>Van Assche, W. ; Yáñez, R. J. ; Dehesa, J. S.</creatorcontrib><description>The information entropy of the harmonic oscillator potential V(x)=1/2λx
2 in both position and momentum spaces can be expressed in terms of the so‐called ‘‘entropy of Hermite polynomials,’’ i.e., the quantity S
n
(H):= −∫−∞
+∞
H
2
n
(x)log H
2
n
(x) e
−x
2
dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(−‖x‖
m
), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et
al. [J. Math. Phys. 35, 4423–4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by S
ρ and S
γ, respectively. Briefly, it is shown that, for large values of n, S
ρ+1/2logλ≂log(π√2n/e)+o(1) and S
γ−1/2log λ≂log(π√2n/e)+o(1), so that S
ρ+S
γ≂log(2π2
n/e
2)+o(1) in agreement with the generalized indetermination relation of Byalinicki‐Birula and Mycielski [Commun. Math. Phys. 44, 129–132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.530949</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1995-08, Vol.36 (8), p.4106-4118</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-449ed94ac08d37500d82acdae1cf4d614797895d01ab0e717bdae052827f88513</citedby><cites>FETCH-LOGICAL-c295t-449ed94ac08d37500d82acdae1cf4d614797895d01ab0e717bdae052827f88513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.530949$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,1556,27911,27912,76145</link.rule.ids></links><search><creatorcontrib>Van Assche, W.</creatorcontrib><creatorcontrib>Yáñez, R. J.</creatorcontrib><creatorcontrib>Dehesa, J. S.</creatorcontrib><title>Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential</title><title>Journal of mathematical physics</title><description>The information entropy of the harmonic oscillator potential V(x)=1/2λx
2 in both position and momentum spaces can be expressed in terms of the so‐called ‘‘entropy of Hermite polynomials,’’ i.e., the quantity S
n
(H):= −∫−∞
+∞
H
2
n
(x)log H
2
n
(x) e
−x
2
dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(−‖x‖
m
), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et
al. [J. Math. Phys. 35, 4423–4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by S
ρ and S
γ, respectively. Briefly, it is shown that, for large values of n, S
ρ+1/2logλ≂log(π√2n/e)+o(1) and S
γ−1/2log λ≂log(π√2n/e)+o(1), so that S
ρ+S
γ≂log(2π2
n/e
2)+o(1) in agreement with the generalized indetermination relation of Byalinicki‐Birula and Mycielski [Commun. Math. Phys. 44, 129–132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqdkEFOwzAQRS0EEqUgcQQvYZEyTuzGXqKqLUiV2MA6cmOnMUoykW2oenvcFnEAVn8xT0_zPyH3DGYM5sUTm4kCFFcXZMJAqqycC3lJJgB5nuVcymtyE8InAGOS8wkJyyF6HA8UG4o-trjDQXd0xO4wYO90F-jexZauvP0ydG_dro2B6sFQNzToex0dDtSeJM6Goya2lrba9zi4mmKoXdfpiD45Y-KS8pZcNUls735zSj5Wy_fFS7Z5W78unjdZnSsRM86VNYrrGqQpSgFgZK5roy2rG27mjJeqlEoYYHoLtmTlNt1A5DIvGykFK6bk4eytPYbgbVON3vXaHyoG1XGsilXnsRL6eEbTu_HU6V_sN_o_rhpNU_wAruR6zg</recordid><startdate>19950801</startdate><enddate>19950801</enddate><creator>Van Assche, W.</creator><creator>Yáñez, R. J.</creator><creator>Dehesa, J. S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950801</creationdate><title>Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential</title><author>Van Assche, W. ; Yáñez, R. J. ; Dehesa, J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-449ed94ac08d37500d82acdae1cf4d614797895d01ab0e717bdae052827f88513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Assche, W.</creatorcontrib><creatorcontrib>Yáñez, R. J.</creatorcontrib><creatorcontrib>Dehesa, J. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Assche, W.</au><au>Yáñez, R. J.</au><au>Dehesa, J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential</atitle><jtitle>Journal of mathematical physics</jtitle><date>1995-08-01</date><risdate>1995</risdate><volume>36</volume><issue>8</issue><spage>4106</spage><epage>4118</epage><pages>4106-4118</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The information entropy of the harmonic oscillator potential V(x)=1/2λx
2 in both position and momentum spaces can be expressed in terms of the so‐called ‘‘entropy of Hermite polynomials,’’ i.e., the quantity S
n
(H):= −∫−∞
+∞
H
2
n
(x)log H
2
n
(x) e
−x
2
dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(−‖x‖
m
), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et
al. [J. Math. Phys. 35, 4423–4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by S
ρ and S
γ, respectively. Briefly, it is shown that, for large values of n, S
ρ+1/2logλ≂log(π√2n/e)+o(1) and S
γ−1/2log λ≂log(π√2n/e)+o(1), so that S
ρ+S
γ≂log(2π2
n/e
2)+o(1) in agreement with the generalized indetermination relation of Byalinicki‐Birula and Mycielski [Commun. Math. Phys. 44, 129–132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.</abstract><doi>10.1063/1.530949</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1995-08, Vol.36 (8), p.4106-4118 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_530949 |
source | AIP Digital Archive |
title | Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20of%20orthogonal%20polynomials%20with%20Freud%20weights%20and%20information%20entropies%20of%20the%20harmonic%20oscillator%20potential&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Van%20Assche,%20W.&rft.date=1995-08-01&rft.volume=36&rft.issue=8&rft.spage=4106&rft.epage=4118&rft.pages=4106-4118&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.530949&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |