A composite Fourier‐wavelet transform and square‐integrable group representations
A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, ori...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1994-08, Vol.35 (8), p.4205-4216 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4216 |
---|---|
container_issue | 8 |
container_start_page | 4205 |
container_title | Journal of mathematical physics |
container_volume | 35 |
creator | Ali, S. Twareque Denisov, L. V. |
description | A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, originally obtained for square‐integrable group representations, to more general measures, arising in quantum probability theory. |
doi_str_mv | 10.1063/1.530849 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_530849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-19c47455156f1b96aa2de50c068e80a061dd9d9bf521bc1b96719e64a36547683</originalsourceid><addsrcrecordid>eNp90MFKw0AQBuBFFKxV8BH2qIfUnWR3s3ssxapQ8GLPYbOZlEibjbNpxZuP4DP6JLZEehE8zWE-fn5-xq5BTEDo7A4mKhNG2hM2AmFskmtlTtlIiDRNUmnMObuI8VUIACPliC2n3IdNF2LTI5-HLTVI359f726Ha-x5T66NdaANd23F49vWEe7fTdvjily5Rr6isO04YUcYse1d34Q2XrKz2q0jXv3eMVvO719mj8ni-eFpNl0kPlW6T8B6mUulQOkaSqudSytUwgtt0AgnNFSVrWxZqxRKfxA5WNTSZVrJXJtszG6GXE8hRsK66KjZOPooQBSHOQoohjn29Hag0TdDy6PdBTq6oqvq_-yf3B92gnDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A composite Fourier‐wavelet transform and square‐integrable group representations</title><source>AIP Digital Archive</source><creator>Ali, S. Twareque ; Denisov, L. V.</creator><creatorcontrib>Ali, S. Twareque ; Denisov, L. V.</creatorcontrib><description>A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, originally obtained for square‐integrable group representations, to more general measures, arising in quantum probability theory.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.530849</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1994-08, Vol.35 (8), p.4205-4216</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-19c47455156f1b96aa2de50c068e80a061dd9d9bf521bc1b96719e64a36547683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.530849$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1558,27923,27924,76161</link.rule.ids></links><search><creatorcontrib>Ali, S. Twareque</creatorcontrib><creatorcontrib>Denisov, L. V.</creatorcontrib><title>A composite Fourier‐wavelet transform and square‐integrable group representations</title><title>Journal of mathematical physics</title><description>A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, originally obtained for square‐integrable group representations, to more general measures, arising in quantum probability theory.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp90MFKw0AQBuBFFKxV8BH2qIfUnWR3s3ssxapQ8GLPYbOZlEibjbNpxZuP4DP6JLZEehE8zWE-fn5-xq5BTEDo7A4mKhNG2hM2AmFskmtlTtlIiDRNUmnMObuI8VUIACPliC2n3IdNF2LTI5-HLTVI359f726Ha-x5T66NdaANd23F49vWEe7fTdvjily5Rr6isO04YUcYse1d34Q2XrKz2q0jXv3eMVvO719mj8ni-eFpNl0kPlW6T8B6mUulQOkaSqudSytUwgtt0AgnNFSVrWxZqxRKfxA5WNTSZVrJXJtszG6GXE8hRsK66KjZOPooQBSHOQoohjn29Hag0TdDy6PdBTq6oqvq_-yf3B92gnDQ</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Ali, S. Twareque</creator><creator>Denisov, L. V.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940801</creationdate><title>A composite Fourier‐wavelet transform and square‐integrable group representations</title><author>Ali, S. Twareque ; Denisov, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-19c47455156f1b96aa2de50c068e80a061dd9d9bf521bc1b96719e64a36547683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, S. Twareque</creatorcontrib><creatorcontrib>Denisov, L. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, S. Twareque</au><au>Denisov, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A composite Fourier‐wavelet transform and square‐integrable group representations</atitle><jtitle>Journal of mathematical physics</jtitle><date>1994-08-01</date><risdate>1994</risdate><volume>35</volume><issue>8</issue><spage>4205</spage><epage>4216</epage><pages>4205-4216</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, originally obtained for square‐integrable group representations, to more general measures, arising in quantum probability theory.</abstract><doi>10.1063/1.530849</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1994-08, Vol.35 (8), p.4205-4216 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_530849 |
source | AIP Digital Archive |
title | A composite Fourier‐wavelet transform and square‐integrable group representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20composite%20Fourier%E2%80%90wavelet%20transform%20and%20square%E2%80%90integrable%20group%20representations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Ali,%20S.%20Twareque&rft.date=1994-08-01&rft.volume=35&rft.issue=8&rft.spage=4205&rft.epage=4216&rft.pages=4205-4216&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.530849&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |