A composite Fourier‐wavelet transform and square‐integrable group representations

A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, ori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1994-08, Vol.35 (8), p.4205-4216
Hauptverfasser: Ali, S. Twareque, Denisov, L. V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4216
container_issue 8
container_start_page 4205
container_title Journal of mathematical physics
container_volume 35
creator Ali, S. Twareque
Denisov, L. V.
description A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, originally obtained for square‐integrable group representations, to more general measures, arising in quantum probability theory.
doi_str_mv 10.1063/1.530849
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_530849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-19c47455156f1b96aa2de50c068e80a061dd9d9bf521bc1b96719e64a36547683</originalsourceid><addsrcrecordid>eNp90MFKw0AQBuBFFKxV8BH2qIfUnWR3s3ssxapQ8GLPYbOZlEibjbNpxZuP4DP6JLZEehE8zWE-fn5-xq5BTEDo7A4mKhNG2hM2AmFskmtlTtlIiDRNUmnMObuI8VUIACPliC2n3IdNF2LTI5-HLTVI359f726Ha-x5T66NdaANd23F49vWEe7fTdvjily5Rr6isO04YUcYse1d34Q2XrKz2q0jXv3eMVvO719mj8ni-eFpNl0kPlW6T8B6mUulQOkaSqudSytUwgtt0AgnNFSVrWxZqxRKfxA5WNTSZVrJXJtszG6GXE8hRsK66KjZOPooQBSHOQoohjn29Hag0TdDy6PdBTq6oqvq_-yf3B92gnDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A composite Fourier‐wavelet transform and square‐integrable group representations</title><source>AIP Digital Archive</source><creator>Ali, S. Twareque ; Denisov, L. V.</creator><creatorcontrib>Ali, S. Twareque ; Denisov, L. V.</creatorcontrib><description>A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, originally obtained for square‐integrable group representations, to more general measures, arising in quantum probability theory.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.530849</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1994-08, Vol.35 (8), p.4205-4216</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-19c47455156f1b96aa2de50c068e80a061dd9d9bf521bc1b96719e64a36547683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.530849$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1558,27923,27924,76161</link.rule.ids></links><search><creatorcontrib>Ali, S. Twareque</creatorcontrib><creatorcontrib>Denisov, L. V.</creatorcontrib><title>A composite Fourier‐wavelet transform and square‐integrable group representations</title><title>Journal of mathematical physics</title><description>A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, originally obtained for square‐integrable group representations, to more general measures, arising in quantum probability theory.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp90MFKw0AQBuBFFKxV8BH2qIfUnWR3s3ssxapQ8GLPYbOZlEibjbNpxZuP4DP6JLZEehE8zWE-fn5-xq5BTEDo7A4mKhNG2hM2AmFskmtlTtlIiDRNUmnMObuI8VUIACPliC2n3IdNF2LTI5-HLTVI359f726Ha-x5T66NdaANd23F49vWEe7fTdvjily5Rr6isO04YUcYse1d34Q2XrKz2q0jXv3eMVvO719mj8ni-eFpNl0kPlW6T8B6mUulQOkaSqudSytUwgtt0AgnNFSVrWxZqxRKfxA5WNTSZVrJXJtszG6GXE8hRsK66KjZOPooQBSHOQoohjn29Hag0TdDy6PdBTq6oqvq_-yf3B92gnDQ</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Ali, S. Twareque</creator><creator>Denisov, L. V.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940801</creationdate><title>A composite Fourier‐wavelet transform and square‐integrable group representations</title><author>Ali, S. Twareque ; Denisov, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-19c47455156f1b96aa2de50c068e80a061dd9d9bf521bc1b96719e64a36547683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, S. Twareque</creatorcontrib><creatorcontrib>Denisov, L. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, S. Twareque</au><au>Denisov, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A composite Fourier‐wavelet transform and square‐integrable group representations</atitle><jtitle>Journal of mathematical physics</jtitle><date>1994-08-01</date><risdate>1994</risdate><volume>35</volume><issue>8</issue><spage>4205</spage><epage>4216</epage><pages>4205-4216</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A formula for a composite Fourier‐wavelet transform is suggested, from which the noncommutative Fourier and wavelet transforms can be obtained as particular examples, as well as several other Fourier‐type transforms. It is shown how this composite transform can be used to extend certain results, originally obtained for square‐integrable group representations, to more general measures, arising in quantum probability theory.</abstract><doi>10.1063/1.530849</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1994-08, Vol.35 (8), p.4205-4216
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_530849
source AIP Digital Archive
title A composite Fourier‐wavelet transform and square‐integrable group representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20composite%20Fourier%E2%80%90wavelet%20transform%20and%20square%E2%80%90integrable%20group%20representations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Ali,%20S.%20Twareque&rft.date=1994-08-01&rft.volume=35&rft.issue=8&rft.spage=4205&rft.epage=4216&rft.pages=4205-4216&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.530849&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true