Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems
The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to tre...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1992-07, Vol.33 (7), p.2384-2389 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2389 |
---|---|
container_issue | 7 |
container_start_page | 2384 |
container_title | Journal of mathematical physics |
container_volume | 33 |
creator | Wehrhahn, R. F. Smirnov, Yu. F. Shirokov, A. M. |
description | The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to treat all spherical harmonics on arbitrary noncompact Riemannian symmetric spaces are elaborated. |
doi_str_mv | 10.1063/1.529979 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_529979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-adf11a4d8bbeb556d56ab84ff5b22630d96eea95f18290f9e3fa1a8297d4bbe03</originalsourceid><addsrcrecordid>eNp1kD1rwzAYhEVpoekH9Cdo6JBAneiVLVsaS-gXBDIknY1svWpUYjlIWvzv6-DSrdPd8NzBHSEPwJbAynwFS8GVqtQFmQGTKqtKIS_JjDHOM15IeU1uYvxmDEAWxYzsd0PXYQoDja1OCYPzX7T3NB2QHoYThqY_9s7Q3XbOn2CxOuuCOk-NsxYD-kTbvg_GeZ2QxiEm7OIdubL6GPH-V2_J5-vLfv2ebbZvH-vnTdZyKVOmjQXQhZFNg40QpRGlbmRhrWg4L3NmVImolbAguWJWYW416NFXphgjLL8l86m3DX2MAW19Cq7TYaiB1ec3aqinN0b0cUJPehx6tEH71sU_XgjBeQUjtpiw2Lqkk-v9_5U_FkFrnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems</title><source>AIP Digital Archive</source><creator>Wehrhahn, R. F. ; Smirnov, Yu. F. ; Shirokov, A. M.</creator><creatorcontrib>Wehrhahn, R. F. ; Smirnov, Yu. F. ; Shirokov, A. M.</creatorcontrib><description>The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to treat all spherical harmonics on arbitrary noncompact Riemannian symmetric spaces are elaborated.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.529979</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Atomic and molecular physics ; Classical and quantum physics: mechanics and fields ; Electronic structure of atoms, molecules and their ions: theory ; Exact sciences and technology ; General theory of scattering ; Other topics in the theory of the electronic structure of atoms, molecules and their ions ; Physics</subject><ispartof>Journal of mathematical physics, 1992-07, Vol.33 (7), p.2384-2389</ispartof><rights>American Institute of Physics</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-adf11a4d8bbeb556d56ab84ff5b22630d96eea95f18290f9e3fa1a8297d4bbe03</citedby><cites>FETCH-LOGICAL-c288t-adf11a4d8bbeb556d56ab84ff5b22630d96eea95f18290f9e3fa1a8297d4bbe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.529979$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27901,27902,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5552271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wehrhahn, R. F.</creatorcontrib><creatorcontrib>Smirnov, Yu. F.</creatorcontrib><creatorcontrib>Shirokov, A. M.</creatorcontrib><title>Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems</title><title>Journal of mathematical physics</title><description>The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to treat all spherical harmonics on arbitrary noncompact Riemannian symmetric spaces are elaborated.</description><subject>Atomic and molecular physics</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>Exact sciences and technology</subject><subject>General theory of scattering</subject><subject>Other topics in the theory of the electronic structure of atoms, molecules and their ions</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp1kD1rwzAYhEVpoekH9Cdo6JBAneiVLVsaS-gXBDIknY1svWpUYjlIWvzv6-DSrdPd8NzBHSEPwJbAynwFS8GVqtQFmQGTKqtKIS_JjDHOM15IeU1uYvxmDEAWxYzsd0PXYQoDja1OCYPzX7T3NB2QHoYThqY_9s7Q3XbOn2CxOuuCOk-NsxYD-kTbvg_GeZ2QxiEm7OIdubL6GPH-V2_J5-vLfv2ebbZvH-vnTdZyKVOmjQXQhZFNg40QpRGlbmRhrWg4L3NmVImolbAguWJWYW416NFXphgjLL8l86m3DX2MAW19Cq7TYaiB1ec3aqinN0b0cUJPehx6tEH71sU_XgjBeQUjtpiw2Lqkk-v9_5U_FkFrnA</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>Wehrhahn, R. F.</creator><creator>Smirnov, Yu. F.</creator><creator>Shirokov, A. M.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920701</creationdate><title>Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems</title><author>Wehrhahn, R. F. ; Smirnov, Yu. F. ; Shirokov, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-adf11a4d8bbeb556d56ab84ff5b22630d96eea95f18290f9e3fa1a8297d4bbe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Atomic and molecular physics</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>Exact sciences and technology</topic><topic>General theory of scattering</topic><topic>Other topics in the theory of the electronic structure of atoms, molecules and their ions</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wehrhahn, R. F.</creatorcontrib><creatorcontrib>Smirnov, Yu. F.</creatorcontrib><creatorcontrib>Shirokov, A. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wehrhahn, R. F.</au><au>Smirnov, Yu. F.</au><au>Shirokov, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems</atitle><jtitle>Journal of mathematical physics</jtitle><date>1992-07-01</date><risdate>1992</risdate><volume>33</volume><issue>7</issue><spage>2384</spage><epage>2389</epage><pages>2384-2389</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to treat all spherical harmonics on arbitrary noncompact Riemannian symmetric spaces are elaborated.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.529979</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1992-07, Vol.33 (7), p.2384-2389 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_529979 |
source | AIP Digital Archive |
subjects | Atomic and molecular physics Classical and quantum physics: mechanics and fields Electronic structure of atoms, molecules and their ions: theory Exact sciences and technology General theory of scattering Other topics in the theory of the electronic structure of atoms, molecules and their ions Physics |
title | Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20scattering%20on%20the%20hyperboloid%20SO(2,1)/SO(2)%20in%20different%20coordinate%20systems&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Wehrhahn,%20R.%20F.&rft.date=1992-07-01&rft.volume=33&rft.issue=7&rft.spage=2384&rft.epage=2389&rft.pages=2384-2389&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.529979&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |