Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems

The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to tre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1992-07, Vol.33 (7), p.2384-2389
Hauptverfasser: Wehrhahn, R. F., Smirnov, Yu. F., Shirokov, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2389
container_issue 7
container_start_page 2384
container_title Journal of mathematical physics
container_volume 33
creator Wehrhahn, R. F.
Smirnov, Yu. F.
Shirokov, A. M.
description The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to treat all spherical harmonics on arbitrary noncompact Riemannian symmetric spaces are elaborated.
doi_str_mv 10.1063/1.529979
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_529979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-adf11a4d8bbeb556d56ab84ff5b22630d96eea95f18290f9e3fa1a8297d4bbe03</originalsourceid><addsrcrecordid>eNp1kD1rwzAYhEVpoekH9Cdo6JBAneiVLVsaS-gXBDIknY1svWpUYjlIWvzv6-DSrdPd8NzBHSEPwJbAynwFS8GVqtQFmQGTKqtKIS_JjDHOM15IeU1uYvxmDEAWxYzsd0PXYQoDja1OCYPzX7T3NB2QHoYThqY_9s7Q3XbOn2CxOuuCOk-NsxYD-kTbvg_GeZ2QxiEm7OIdubL6GPH-V2_J5-vLfv2ebbZvH-vnTdZyKVOmjQXQhZFNg40QpRGlbmRhrWg4L3NmVImolbAguWJWYW416NFXphgjLL8l86m3DX2MAW19Cq7TYaiB1ec3aqinN0b0cUJPehx6tEH71sU_XgjBeQUjtpiw2Lqkk-v9_5U_FkFrnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems</title><source>AIP Digital Archive</source><creator>Wehrhahn, R. F. ; Smirnov, Yu. F. ; Shirokov, A. M.</creator><creatorcontrib>Wehrhahn, R. F. ; Smirnov, Yu. F. ; Shirokov, A. M.</creatorcontrib><description>The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to treat all spherical harmonics on arbitrary noncompact Riemannian symmetric spaces are elaborated.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.529979</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Atomic and molecular physics ; Classical and quantum physics: mechanics and fields ; Electronic structure of atoms, molecules and their ions: theory ; Exact sciences and technology ; General theory of scattering ; Other topics in the theory of the electronic structure of atoms, molecules and their ions ; Physics</subject><ispartof>Journal of mathematical physics, 1992-07, Vol.33 (7), p.2384-2389</ispartof><rights>American Institute of Physics</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-adf11a4d8bbeb556d56ab84ff5b22630d96eea95f18290f9e3fa1a8297d4bbe03</citedby><cites>FETCH-LOGICAL-c288t-adf11a4d8bbeb556d56ab84ff5b22630d96eea95f18290f9e3fa1a8297d4bbe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.529979$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27901,27902,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5552271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wehrhahn, R. F.</creatorcontrib><creatorcontrib>Smirnov, Yu. F.</creatorcontrib><creatorcontrib>Shirokov, A. M.</creatorcontrib><title>Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems</title><title>Journal of mathematical physics</title><description>The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to treat all spherical harmonics on arbitrary noncompact Riemannian symmetric spaces are elaborated.</description><subject>Atomic and molecular physics</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>Exact sciences and technology</subject><subject>General theory of scattering</subject><subject>Other topics in the theory of the electronic structure of atoms, molecules and their ions</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp1kD1rwzAYhEVpoekH9Cdo6JBAneiVLVsaS-gXBDIknY1svWpUYjlIWvzv6-DSrdPd8NzBHSEPwJbAynwFS8GVqtQFmQGTKqtKIS_JjDHOM15IeU1uYvxmDEAWxYzsd0PXYQoDja1OCYPzX7T3NB2QHoYThqY_9s7Q3XbOn2CxOuuCOk-NsxYD-kTbvg_GeZ2QxiEm7OIdubL6GPH-V2_J5-vLfv2ebbZvH-vnTdZyKVOmjQXQhZFNg40QpRGlbmRhrWg4L3NmVImolbAguWJWYW416NFXphgjLL8l86m3DX2MAW19Cq7TYaiB1ec3aqinN0b0cUJPehx6tEH71sU_XgjBeQUjtpiw2Lqkk-v9_5U_FkFrnA</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>Wehrhahn, R. F.</creator><creator>Smirnov, Yu. F.</creator><creator>Shirokov, A. M.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920701</creationdate><title>Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems</title><author>Wehrhahn, R. F. ; Smirnov, Yu. F. ; Shirokov, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-adf11a4d8bbeb556d56ab84ff5b22630d96eea95f18290f9e3fa1a8297d4bbe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Atomic and molecular physics</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>Exact sciences and technology</topic><topic>General theory of scattering</topic><topic>Other topics in the theory of the electronic structure of atoms, molecules and their ions</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wehrhahn, R. F.</creatorcontrib><creatorcontrib>Smirnov, Yu. F.</creatorcontrib><creatorcontrib>Shirokov, A. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wehrhahn, R. F.</au><au>Smirnov, Yu. F.</au><au>Shirokov, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems</atitle><jtitle>Journal of mathematical physics</jtitle><date>1992-07-01</date><risdate>1992</risdate><volume>33</volume><issue>7</issue><spage>2384</spage><epage>2389</epage><pages>2384-2389</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The symmetry scattering theory based on the Harish‐Chandra–Helgason theory of spherical functions on noncompact Riemannian symmetric spaces is extended to treat all spherical harmonics on the hyperboloid SO(2,1)/SO(2). The required conditions for an extension of the symmetry scattering theory to treat all spherical harmonics on arbitrary noncompact Riemannian symmetric spaces are elaborated.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.529979</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1992-07, Vol.33 (7), p.2384-2389
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_529979
source AIP Digital Archive
subjects Atomic and molecular physics
Classical and quantum physics: mechanics and fields
Electronic structure of atoms, molecules and their ions: theory
Exact sciences and technology
General theory of scattering
Other topics in the theory of the electronic structure of atoms, molecules and their ions
Physics
title Symmetry scattering on the hyperboloid SO(2,1)/SO(2) in different coordinate systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20scattering%20on%20the%20hyperboloid%20SO(2,1)/SO(2)%20in%20different%20coordinate%20systems&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Wehrhahn,%20R.%20F.&rft.date=1992-07-01&rft.volume=33&rft.issue=7&rft.spage=2384&rft.epage=2389&rft.pages=2384-2389&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.529979&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true