Extended Hilbert space approach to few‐body problems
A general formulation of the quantum scattering theory for a system of few particles, which have an internal structure, is given. Due to freezing out the internal degrees of freedom in the external channels, a certain class of energy‐dependent potentials is generated. By means of potential theory, a...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1990-07, Vol.31 (7), p.1681-1690 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1690 |
---|---|
container_issue | 7 |
container_start_page | 1681 |
container_title | Journal of mathematical physics |
container_volume | 31 |
creator | Kuperin, Yu. A. Makarov, K. A. Merkuriev, S. P. Motovilov, A. K. Pavlov, B. S. |
description | A general formulation of the quantum scattering theory for a system of few particles, which have an internal structure, is given. Due to freezing out the internal degrees of freedom in the external channels, a certain class of energy‐dependent potentials is generated. By means of potential theory, a modified Faddeev equation is derived both in external and internal channels. The Fredholmity of these equations is proven and this is what provides a sound basis for solving the addressed scattering problem. |
doi_str_mv | 10.1063/1.528715 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_528715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a0528617509c1a1e76d6c93d99dddf7f2d0a2d3a2eeeeeb3bfce938dbe3095003</originalsourceid><addsrcrecordid>eNp9z81KxDAQB_AgCq6r4CP04EEPXSdJmyZHWXZdYcGLnss0H1jpNiUp6t58BJ_RJ7FLpRfBuQwMP2bmT8glhQUFwW_pImeyoPkRmVGQKi1ELo_JDICxlGVSnpKzGF8BKJVZNiNi9dHb1liTbOqmsqFPYofaJth1waN-SXqfOPv-_flVebNPhmHV2F08JycOm2gvfvucPK9XT8tNun28f1jebVPNc9GnCMMzghY5KE2R2kIYoRU3ShljXOGYAWSGI7OHqnjltFVcmspyUDkAn5Prca8OPsZgXdmFeodhX1IoD3lLWo55B3o10g6jxsYFbHUdJ5_xjCuQA7sZWdR1j33t24m8-TCtKzvj_rN_zv8ALcFxGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extended Hilbert space approach to few‐body problems</title><source>AIP Digital Archive</source><creator>Kuperin, Yu. A. ; Makarov, K. A. ; Merkuriev, S. P. ; Motovilov, A. K. ; Pavlov, B. S.</creator><creatorcontrib>Kuperin, Yu. A. ; Makarov, K. A. ; Merkuriev, S. P. ; Motovilov, A. K. ; Pavlov, B. S.</creatorcontrib><description>A general formulation of the quantum scattering theory for a system of few particles, which have an internal structure, is given. Due to freezing out the internal degrees of freedom in the external channels, a certain class of energy‐dependent potentials is generated. By means of potential theory, a modified Faddeev equation is derived both in external and internal channels. The Fredholmity of these equations is proven and this is what provides a sound basis for solving the addressed scattering problem.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.528715</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; Physics</subject><ispartof>Journal of mathematical physics, 1990-07, Vol.31 (7), p.1681-1690</ispartof><rights>American Institute of Physics</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a0528617509c1a1e76d6c93d99dddf7f2d0a2d3a2eeeeeb3bfce938dbe3095003</citedby><cites>FETCH-LOGICAL-c356t-a0528617509c1a1e76d6c93d99dddf7f2d0a2d3a2eeeeeb3bfce938dbe3095003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.528715$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,1554,27905,27906,76139</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4343908$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuperin, Yu. A.</creatorcontrib><creatorcontrib>Makarov, K. A.</creatorcontrib><creatorcontrib>Merkuriev, S. P.</creatorcontrib><creatorcontrib>Motovilov, A. K.</creatorcontrib><creatorcontrib>Pavlov, B. S.</creatorcontrib><title>Extended Hilbert space approach to few‐body problems</title><title>Journal of mathematical physics</title><description>A general formulation of the quantum scattering theory for a system of few particles, which have an internal structure, is given. Due to freezing out the internal degrees of freedom in the external channels, a certain class of energy‐dependent potentials is generated. By means of potential theory, a modified Faddeev equation is derived both in external and internal channels. The Fredholmity of these equations is proven and this is what provides a sound basis for solving the addressed scattering problem.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp9z81KxDAQB_AgCq6r4CP04EEPXSdJmyZHWXZdYcGLnss0H1jpNiUp6t58BJ_RJ7FLpRfBuQwMP2bmT8glhQUFwW_pImeyoPkRmVGQKi1ELo_JDICxlGVSnpKzGF8BKJVZNiNi9dHb1liTbOqmsqFPYofaJth1waN-SXqfOPv-_flVebNPhmHV2F08JycOm2gvfvucPK9XT8tNun28f1jebVPNc9GnCMMzghY5KE2R2kIYoRU3ShljXOGYAWSGI7OHqnjltFVcmspyUDkAn5Prca8OPsZgXdmFeodhX1IoD3lLWo55B3o10g6jxsYFbHUdJ5_xjCuQA7sZWdR1j33t24m8-TCtKzvj_rN_zv8ALcFxGA</recordid><startdate>19900701</startdate><enddate>19900701</enddate><creator>Kuperin, Yu. A.</creator><creator>Makarov, K. A.</creator><creator>Merkuriev, S. P.</creator><creator>Motovilov, A. K.</creator><creator>Pavlov, B. S.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900701</creationdate><title>Extended Hilbert space approach to few‐body problems</title><author>Kuperin, Yu. A. ; Makarov, K. A. ; Merkuriev, S. P. ; Motovilov, A. K. ; Pavlov, B. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a0528617509c1a1e76d6c93d99dddf7f2d0a2d3a2eeeeeb3bfce938dbe3095003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuperin, Yu. A.</creatorcontrib><creatorcontrib>Makarov, K. A.</creatorcontrib><creatorcontrib>Merkuriev, S. P.</creatorcontrib><creatorcontrib>Motovilov, A. K.</creatorcontrib><creatorcontrib>Pavlov, B. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuperin, Yu. A.</au><au>Makarov, K. A.</au><au>Merkuriev, S. P.</au><au>Motovilov, A. K.</au><au>Pavlov, B. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Hilbert space approach to few‐body problems</atitle><jtitle>Journal of mathematical physics</jtitle><date>1990-07-01</date><risdate>1990</risdate><volume>31</volume><issue>7</issue><spage>1681</spage><epage>1690</epage><pages>1681-1690</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A general formulation of the quantum scattering theory for a system of few particles, which have an internal structure, is given. Due to freezing out the internal degrees of freedom in the external channels, a certain class of energy‐dependent potentials is generated. By means of potential theory, a modified Faddeev equation is derived both in external and internal channels. The Fredholmity of these equations is proven and this is what provides a sound basis for solving the addressed scattering problem.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.528715</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1990-07, Vol.31 (7), p.1681-1690 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_528715 |
source | AIP Digital Archive |
subjects | Classical and quantum physics: mechanics and fields Exact sciences and technology Physics |
title | Extended Hilbert space approach to few‐body problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Hilbert%20space%20approach%20to%20few%E2%80%90body%20problems&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Kuperin,%20Yu.%20A.&rft.date=1990-07-01&rft.volume=31&rft.issue=7&rft.spage=1681&rft.epage=1690&rft.pages=1681-1690&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.528715&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |