Canonical structures for dispersive waves in shallow water

The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow wate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1987-07, Vol.28 (7), p.1499-1504
Hauptverfasser: Neyzi, Fahrünisa, Nutku, Yavuz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1504
container_issue 7
container_start_page 1499
container_title Journal of mathematical physics
container_volume 28
creator Neyzi, Fahrünisa
Nutku, Yavuz
description The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac’s theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham–Broer–Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri‐Hamiltonian structure.
doi_str_mv 10.1063/1.527505
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_527505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-14d8411f95bae60eaabc6ffb6dfbbdbc2773bf58d27173568340aeeadb24981a3</originalsourceid><addsrcrecordid>eNp9z0tLw0AUBeBBFKxV8Cdk4UIXqTOTedWdlPqAghtdhzsvHIlJmJu2-O-NRLoRXF04fJzLIeSS0QWjqrplC8m1pPKIzBg1y1IraY7JjFLOSy6MOSVniB-UMmaEmJG7FbRdmxw0BQ5564ZtDljELhc-YR8ypl0o9rAbw9QW-A5N0-3HYAj5nJxEaDBc_N45eXtYv66eys3L4_PqflO6ivOhZMIbwVhcSgtB0QBgnYrRKh-t9dZxrSsbpfFcM11JZSpBIQTwloulYVDNyfXU63KHmEOs-5w-IX_VjNY_m2tWT5tHejXRHnCcFDO0LuHBa8U11WJkNxNDlwYYUtceyK7Lh7q69_E_--f9NymOclw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Canonical structures for dispersive waves in shallow water</title><source>AIP Digital Archive</source><creator>Neyzi, Fahrünisa ; Nutku, Yavuz</creator><creatorcontrib>Neyzi, Fahrünisa ; Nutku, Yavuz</creatorcontrib><description>The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac’s theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham–Broer–Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri‐Hamiltonian structure.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.527505</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic waves ; Physics</subject><ispartof>Journal of mathematical physics, 1987-07, Vol.28 (7), p.1499-1504</ispartof><rights>American Institute of Physics</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-14d8411f95bae60eaabc6ffb6dfbbdbc2773bf58d27173568340aeeadb24981a3</citedby><cites>FETCH-LOGICAL-c322t-14d8411f95bae60eaabc6ffb6dfbbdbc2773bf58d27173568340aeeadb24981a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.527505$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27901,27902,76133</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7627074$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neyzi, Fahrünisa</creatorcontrib><creatorcontrib>Nutku, Yavuz</creatorcontrib><title>Canonical structures for dispersive waves in shallow water</title><title>Journal of mathematical physics</title><description>The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac’s theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham–Broer–Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri‐Hamiltonian structure.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic waves</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp9z0tLw0AUBeBBFKxV8Cdk4UIXqTOTedWdlPqAghtdhzsvHIlJmJu2-O-NRLoRXF04fJzLIeSS0QWjqrplC8m1pPKIzBg1y1IraY7JjFLOSy6MOSVniB-UMmaEmJG7FbRdmxw0BQ5564ZtDljELhc-YR8ypl0o9rAbw9QW-A5N0-3HYAj5nJxEaDBc_N45eXtYv66eys3L4_PqflO6ivOhZMIbwVhcSgtB0QBgnYrRKh-t9dZxrSsbpfFcM11JZSpBIQTwloulYVDNyfXU63KHmEOs-5w-IX_VjNY_m2tWT5tHejXRHnCcFDO0LuHBa8U11WJkNxNDlwYYUtceyK7Lh7q69_E_--f9NymOclw</recordid><startdate>19870701</startdate><enddate>19870701</enddate><creator>Neyzi, Fahrünisa</creator><creator>Nutku, Yavuz</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870701</creationdate><title>Canonical structures for dispersive waves in shallow water</title><author>Neyzi, Fahrünisa ; Nutku, Yavuz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-14d8411f95bae60eaabc6ffb6dfbbdbc2773bf58d27173568340aeeadb24981a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic waves</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neyzi, Fahrünisa</creatorcontrib><creatorcontrib>Nutku, Yavuz</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neyzi, Fahrünisa</au><au>Nutku, Yavuz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical structures for dispersive waves in shallow water</atitle><jtitle>Journal of mathematical physics</jtitle><date>1987-07-01</date><risdate>1987</risdate><volume>28</volume><issue>7</issue><spage>1499</spage><epage>1504</epage><pages>1499-1504</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac’s theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham–Broer–Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri‐Hamiltonian structure.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.527505</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1987-07, Vol.28 (7), p.1499-1504
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_527505
source AIP Digital Archive
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic waves
Physics
title Canonical structures for dispersive waves in shallow water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20structures%20for%20dispersive%20waves%20in%20shallow%20water&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Neyzi,%20Fahr%C3%BCnisa&rft.date=1987-07-01&rft.volume=28&rft.issue=7&rft.spage=1499&rft.epage=1504&rft.pages=1499-1504&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.527505&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true