Canonical structures for dispersive waves in shallow water
The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow wate...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1987-07, Vol.28 (7), p.1499-1504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1504 |
---|---|
container_issue | 7 |
container_start_page | 1499 |
container_title | Journal of mathematical physics |
container_volume | 28 |
creator | Neyzi, Fahrünisa Nutku, Yavuz |
description | The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac’s theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham–Broer–Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri‐Hamiltonian structure. |
doi_str_mv | 10.1063/1.527505 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_527505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-14d8411f95bae60eaabc6ffb6dfbbdbc2773bf58d27173568340aeeadb24981a3</originalsourceid><addsrcrecordid>eNp9z0tLw0AUBeBBFKxV8Cdk4UIXqTOTedWdlPqAghtdhzsvHIlJmJu2-O-NRLoRXF04fJzLIeSS0QWjqrplC8m1pPKIzBg1y1IraY7JjFLOSy6MOSVniB-UMmaEmJG7FbRdmxw0BQ5564ZtDljELhc-YR8ypl0o9rAbw9QW-A5N0-3HYAj5nJxEaDBc_N45eXtYv66eys3L4_PqflO6ivOhZMIbwVhcSgtB0QBgnYrRKh-t9dZxrSsbpfFcM11JZSpBIQTwloulYVDNyfXU63KHmEOs-5w-IX_VjNY_m2tWT5tHejXRHnCcFDO0LuHBa8U11WJkNxNDlwYYUtceyK7Lh7q69_E_--f9NymOclw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Canonical structures for dispersive waves in shallow water</title><source>AIP Digital Archive</source><creator>Neyzi, Fahrünisa ; Nutku, Yavuz</creator><creatorcontrib>Neyzi, Fahrünisa ; Nutku, Yavuz</creatorcontrib><description>The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac’s theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham–Broer–Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri‐Hamiltonian structure.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.527505</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic waves ; Physics</subject><ispartof>Journal of mathematical physics, 1987-07, Vol.28 (7), p.1499-1504</ispartof><rights>American Institute of Physics</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-14d8411f95bae60eaabc6ffb6dfbbdbc2773bf58d27173568340aeeadb24981a3</citedby><cites>FETCH-LOGICAL-c322t-14d8411f95bae60eaabc6ffb6dfbbdbc2773bf58d27173568340aeeadb24981a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.527505$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27901,27902,76133</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7627074$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neyzi, Fahrünisa</creatorcontrib><creatorcontrib>Nutku, Yavuz</creatorcontrib><title>Canonical structures for dispersive waves in shallow water</title><title>Journal of mathematical physics</title><description>The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac’s theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham–Broer–Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri‐Hamiltonian structure.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic waves</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp9z0tLw0AUBeBBFKxV8Cdk4UIXqTOTedWdlPqAghtdhzsvHIlJmJu2-O-NRLoRXF04fJzLIeSS0QWjqrplC8m1pPKIzBg1y1IraY7JjFLOSy6MOSVniB-UMmaEmJG7FbRdmxw0BQ5564ZtDljELhc-YR8ypl0o9rAbw9QW-A5N0-3HYAj5nJxEaDBc_N45eXtYv66eys3L4_PqflO6ivOhZMIbwVhcSgtB0QBgnYrRKh-t9dZxrSsbpfFcM11JZSpBIQTwloulYVDNyfXU63KHmEOs-5w-IX_VjNY_m2tWT5tHejXRHnCcFDO0LuHBa8U11WJkNxNDlwYYUtceyK7Lh7q69_E_--f9NymOclw</recordid><startdate>19870701</startdate><enddate>19870701</enddate><creator>Neyzi, Fahrünisa</creator><creator>Nutku, Yavuz</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870701</creationdate><title>Canonical structures for dispersive waves in shallow water</title><author>Neyzi, Fahrünisa ; Nutku, Yavuz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-14d8411f95bae60eaabc6ffb6dfbbdbc2773bf58d27173568340aeeadb24981a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic waves</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neyzi, Fahrünisa</creatorcontrib><creatorcontrib>Nutku, Yavuz</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neyzi, Fahrünisa</au><au>Nutku, Yavuz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical structures for dispersive waves in shallow water</atitle><jtitle>Journal of mathematical physics</jtitle><date>1987-07-01</date><risdate>1987</risdate><volume>28</volume><issue>7</issue><spage>1499</spage><epage>1504</epage><pages>1499-1504</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The canonical Hamiltonian structure of the equations of fluid dynamics obtained in the Boussinesq approximation are considered. New variational formulations of these equations are proposed and it is found that, as in the case of the KdV equation and the equations governing long waves in shallow water, they are degenerate Lagrangian systems. Therefore, in order to cast these equations into canonical form it is again necessary to use Dirac’s theory of constraints. It is found that there are primary and secondary constraints which are second class and it is possible to construct the Hamiltonian in terms of canonical variables. Among the examples of Boussinesq equations that are discussed are the equations of Whitham–Broer–Kaup which Kupershmidt has recently expressed in symmetric form and shown to admit tri‐Hamiltonian structure.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.527505</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1987-07, Vol.28 (7), p.1499-1504 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_527505 |
source | AIP Digital Archive |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic waves Physics |
title | Canonical structures for dispersive waves in shallow water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20structures%20for%20dispersive%20waves%20in%20shallow%20water&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Neyzi,%20Fahr%C3%BCnisa&rft.date=1987-07-01&rft.volume=28&rft.issue=7&rft.spage=1499&rft.epage=1504&rft.pages=1499-1504&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.527505&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |