Relation between the connected diagram and smoothing methods for rough surface scattering

In previous work by the author on connected diagram expansion methods for the problem of scattering from a random rough surface a stochastic Lippmann–Schwinger integral equation in Fourier transform space for the scattered part of the Green’s function was derived. Averaging techniques using homogene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1986-01, Vol.27 (1), p.377-379
1. Verfasser: DeSanto, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 379
container_issue 1
container_start_page 377
container_title Journal of mathematical physics
container_volume 27
creator DeSanto, John A.
description In previous work by the author on connected diagram expansion methods for the problem of scattering from a random rough surface a stochastic Lippmann–Schwinger integral equation in Fourier transform space for the scattered part of the Green’s function was derived. Averaging techniques using homogeneous statistics and a statistical cluster decomposition on the surface interaction function yielded a connected diagram expansion for the coherent and incoherent Green’s functions. Here it is demonstrated that the smoothing method applied to this stochastic integral equation yields a result that agrees with the connected diagram expansion only to second order in the surface interaction. For third‐ and higher‐order interactions, the smoothing method does not yield connected terms.
doi_str_mv 10.1063/1.527343
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_527343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-680574f06f8473d8513f45d6259dddf6d00028e8cf0ba9676b4119e0a9b94b863</originalsourceid><addsrcrecordid>eNp90M1KxDAUBeAgCo6j4CNk4UIX1aRJk3Qpg38wIIguXJU0uZlWpsmQZBTf3mplNoKru_k493AQOqXkkhLBruhlVUrG2R6aUaLqQopK7aMZIWVZlFypQ3SU0hshlCrOZ-j1CdY698HjFvIHgMe5A2yC92AyWGx7vYp6wNpbnIYQctf7FR4gd8Em7ELEMWxXHU7b6LQBnIzOGeKIjtGB0-sEJ793jl5ub54X98Xy8e5hcb0sDFMqF0KRSnJHhFNcMqsqyhyvrCir2lrrhCVjdQXKONLqWkjRckprILpua94qwebofMo1MaQUwTWb2A86fjaUNN-TNLSZJhnp2UQ3euy5dlF706edV1LKipQju5hYMn3-GWdH3kPcxTUb6_6zf95_AawWfDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relation between the connected diagram and smoothing methods for rough surface scattering</title><source>AIP Digital Archive</source><creator>DeSanto, John A.</creator><creatorcontrib>DeSanto, John A.</creatorcontrib><description>In previous work by the author on connected diagram expansion methods for the problem of scattering from a random rough surface a stochastic Lippmann–Schwinger integral equation in Fourier transform space for the scattered part of the Green’s function was derived. Averaging techniques using homogeneous statistics and a statistical cluster decomposition on the surface interaction function yielded a connected diagram expansion for the coherent and incoherent Green’s functions. Here it is demonstrated that the smoothing method applied to this stochastic integral equation yields a result that agrees with the connected diagram expansion only to second order in the surface interaction. For third‐ and higher‐order interactions, the smoothing method does not yield connected terms.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.527343</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Function theory, analysis ; Mathematical methods in physics ; Physics</subject><ispartof>Journal of mathematical physics, 1986-01, Vol.27 (1), p.377-379</ispartof><rights>American Institute of Physics</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-680574f06f8473d8513f45d6259dddf6d00028e8cf0ba9676b4119e0a9b94b863</citedby><cites>FETCH-LOGICAL-c388t-680574f06f8473d8513f45d6259dddf6d00028e8cf0ba9676b4119e0a9b94b863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.527343$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1559,4024,27923,27924,27925,76390</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8777502$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DeSanto, John A.</creatorcontrib><title>Relation between the connected diagram and smoothing methods for rough surface scattering</title><title>Journal of mathematical physics</title><description>In previous work by the author on connected diagram expansion methods for the problem of scattering from a random rough surface a stochastic Lippmann–Schwinger integral equation in Fourier transform space for the scattered part of the Green’s function was derived. Averaging techniques using homogeneous statistics and a statistical cluster decomposition on the surface interaction function yielded a connected diagram expansion for the coherent and incoherent Green’s functions. Here it is demonstrated that the smoothing method applied to this stochastic integral equation yields a result that agrees with the connected diagram expansion only to second order in the surface interaction. For third‐ and higher‐order interactions, the smoothing method does not yield connected terms.</description><subject>Exact sciences and technology</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAUBeAgCo6j4CNk4UIX1aRJk3Qpg38wIIguXJU0uZlWpsmQZBTf3mplNoKru_k493AQOqXkkhLBruhlVUrG2R6aUaLqQopK7aMZIWVZlFypQ3SU0hshlCrOZ-j1CdY698HjFvIHgMe5A2yC92AyWGx7vYp6wNpbnIYQctf7FR4gd8Em7ELEMWxXHU7b6LQBnIzOGeKIjtGB0-sEJ793jl5ub54X98Xy8e5hcb0sDFMqF0KRSnJHhFNcMqsqyhyvrCir2lrrhCVjdQXKONLqWkjRckprILpua94qwebofMo1MaQUwTWb2A86fjaUNN-TNLSZJhnp2UQ3euy5dlF706edV1LKipQju5hYMn3-GWdH3kPcxTUb6_6zf95_AawWfDs</recordid><startdate>198601</startdate><enddate>198601</enddate><creator>DeSanto, John A.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198601</creationdate><title>Relation between the connected diagram and smoothing methods for rough surface scattering</title><author>DeSanto, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-680574f06f8473d8513f45d6259dddf6d00028e8cf0ba9676b4119e0a9b94b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Exact sciences and technology</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeSanto, John A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeSanto, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relation between the connected diagram and smoothing methods for rough surface scattering</atitle><jtitle>Journal of mathematical physics</jtitle><date>1986-01</date><risdate>1986</risdate><volume>27</volume><issue>1</issue><spage>377</spage><epage>379</epage><pages>377-379</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In previous work by the author on connected diagram expansion methods for the problem of scattering from a random rough surface a stochastic Lippmann–Schwinger integral equation in Fourier transform space for the scattered part of the Green’s function was derived. Averaging techniques using homogeneous statistics and a statistical cluster decomposition on the surface interaction function yielded a connected diagram expansion for the coherent and incoherent Green’s functions. Here it is demonstrated that the smoothing method applied to this stochastic integral equation yields a result that agrees with the connected diagram expansion only to second order in the surface interaction. For third‐ and higher‐order interactions, the smoothing method does not yield connected terms.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.527343</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1986-01, Vol.27 (1), p.377-379
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_527343
source AIP Digital Archive
subjects Exact sciences and technology
Function theory, analysis
Mathematical methods in physics
Physics
title Relation between the connected diagram and smoothing methods for rough surface scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relation%20between%20the%20connected%20diagram%20and%20smoothing%20methods%20for%20rough%20surface%20scattering&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=DeSanto,%20John%20A.&rft.date=1986-01&rft.volume=27&rft.issue=1&rft.spage=377&rft.epage=379&rft.pages=377-379&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.527343&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true