Classical SU(2) Yang–Mills–Higgs system: Time‐dependent solutions by similarity method

A similarity analysis of the Wu–Yang–’t Hooft–Julia–Zee‐ansatz‐reduced system of nonlinear differential equations of classical SU(2) Yang–Mills–Higgs theory is presented. This yields the similarity group G of the equations. Considering G and one of its subgroups denoted G 1, some previously known ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1985-11, Vol.26 (11), p.2746-2748
Hauptverfasser: Babu Joseph, K., Baby, B. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2748
container_issue 11
container_start_page 2746
container_title Journal of mathematical physics
container_volume 26
creator Babu Joseph, K.
Baby, B. V.
description A similarity analysis of the Wu–Yang–’t Hooft–Julia–Zee‐ansatz‐reduced system of nonlinear differential equations of classical SU(2) Yang–Mills–Higgs theory is presented. This yields the similarity group G of the equations. Considering G and one of its subgroups denoted G 1, some previously known time‐dependent solutions in the Prasad–Sommerfield limit are generated. Two new time‐dependent solutions are also reported.
doi_str_mv 10.1063/1.526745
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_526745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-5f11f24e5440e1a464f4b1705e9a67d7dd29f0d1df02851c4c4d9e1f15797cc63</originalsourceid><addsrcrecordid>eNp90LtKA0EUBuBBFIxR8BGmsEiKjXMmM3uxk6BGUCxMCkFYJnOJI3tjzypsl0cQfMM8iRtW0ghWf_PxH_5DyDmwCbBwegkTycNIyAMyABYnQRTK-JAMGOM84CKOj8kJ4jtjALEQA_I6yxSi1yqjz8sRH9MXVay3m-9Hn2XY5dyv10ixxcbmV3Thc7vdfBlb2cLYoqFYZh-NLwukq5aiz32mat-0NLfNW2lOyZFTGdqz3xyS5e3NYjYPHp7u7mfXD4GectEE0gE4LqwUgllQIhROrCBi0iYqjExkDE8cM2Ac47EELbQwiQUHMkoircPpkIz6Xl2XiLV1aVX7XNVtCizdfSWFtP9KRy96WinsRrtaFdrj3sdhwrjkHRv3DLVv1G7hnnyW9b4urYz7z_45_wMXrH-1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Classical SU(2) Yang–Mills–Higgs system: Time‐dependent solutions by similarity method</title><source>AIP Digital Archive</source><creator>Babu Joseph, K. ; Baby, B. V.</creator><creatorcontrib>Babu Joseph, K. ; Baby, B. V.</creatorcontrib><description>A similarity analysis of the Wu–Yang–’t Hooft–Julia–Zee‐ansatz‐reduced system of nonlinear differential equations of classical SU(2) Yang–Mills–Higgs theory is presented. This yields the similarity group G of the equations. Considering G and one of its subgroups denoted G 1, some previously known time‐dependent solutions in the Prasad–Sommerfield limit are generated. Two new time‐dependent solutions are also reported.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.526745</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; Physics ; Theory of quantized fields</subject><ispartof>Journal of mathematical physics, 1985-11, Vol.26 (11), p.2746-2748</ispartof><rights>American Institute of Physics</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-5f11f24e5440e1a464f4b1705e9a67d7dd29f0d1df02851c4c4d9e1f15797cc63</citedby><cites>FETCH-LOGICAL-c324t-5f11f24e5440e1a464f4b1705e9a67d7dd29f0d1df02851c4c4d9e1f15797cc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.526745$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1558,27923,27924,76161</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8690252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Babu Joseph, K.</creatorcontrib><creatorcontrib>Baby, B. V.</creatorcontrib><title>Classical SU(2) Yang–Mills–Higgs system: Time‐dependent solutions by similarity method</title><title>Journal of mathematical physics</title><description>A similarity analysis of the Wu–Yang–’t Hooft–Julia–Zee‐ansatz‐reduced system of nonlinear differential equations of classical SU(2) Yang–Mills–Higgs theory is presented. This yields the similarity group G of the equations. Considering G and one of its subgroups denoted G 1, some previously known time‐dependent solutions in the Prasad–Sommerfield limit are generated. Two new time‐dependent solutions are also reported.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Theory of quantized fields</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp90LtKA0EUBuBBFIxR8BGmsEiKjXMmM3uxk6BGUCxMCkFYJnOJI3tjzypsl0cQfMM8iRtW0ghWf_PxH_5DyDmwCbBwegkTycNIyAMyABYnQRTK-JAMGOM84CKOj8kJ4jtjALEQA_I6yxSi1yqjz8sRH9MXVay3m-9Hn2XY5dyv10ixxcbmV3Thc7vdfBlb2cLYoqFYZh-NLwukq5aiz32mat-0NLfNW2lOyZFTGdqz3xyS5e3NYjYPHp7u7mfXD4GectEE0gE4LqwUgllQIhROrCBi0iYqjExkDE8cM2Ac47EELbQwiQUHMkoircPpkIz6Xl2XiLV1aVX7XNVtCizdfSWFtP9KRy96WinsRrtaFdrj3sdhwrjkHRv3DLVv1G7hnnyW9b4urYz7z_45_wMXrH-1</recordid><startdate>198511</startdate><enddate>198511</enddate><creator>Babu Joseph, K.</creator><creator>Baby, B. V.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198511</creationdate><title>Classical SU(2) Yang–Mills–Higgs system: Time‐dependent solutions by similarity method</title><author>Babu Joseph, K. ; Baby, B. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-5f11f24e5440e1a464f4b1705e9a67d7dd29f0d1df02851c4c4d9e1f15797cc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Theory of quantized fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babu Joseph, K.</creatorcontrib><creatorcontrib>Baby, B. V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babu Joseph, K.</au><au>Baby, B. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical SU(2) Yang–Mills–Higgs system: Time‐dependent solutions by similarity method</atitle><jtitle>Journal of mathematical physics</jtitle><date>1985-11</date><risdate>1985</risdate><volume>26</volume><issue>11</issue><spage>2746</spage><epage>2748</epage><pages>2746-2748</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A similarity analysis of the Wu–Yang–’t Hooft–Julia–Zee‐ansatz‐reduced system of nonlinear differential equations of classical SU(2) Yang–Mills–Higgs theory is presented. This yields the similarity group G of the equations. Considering G and one of its subgroups denoted G 1, some previously known time‐dependent solutions in the Prasad–Sommerfield limit are generated. Two new time‐dependent solutions are also reported.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.526745</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1985-11, Vol.26 (11), p.2746-2748
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_526745
source AIP Digital Archive
subjects Classical and quantum physics: mechanics and fields
Exact sciences and technology
Physics
Theory of quantized fields
title Classical SU(2) Yang–Mills–Higgs system: Time‐dependent solutions by similarity method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20SU(2)%20Yang%E2%80%93Mills%E2%80%93Higgs%20system:%20Time%E2%80%90dependent%20solutions%20by%20similarity%20method&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Babu%20Joseph,%20K.&rft.date=1985-11&rft.volume=26&rft.issue=11&rft.spage=2746&rft.epage=2748&rft.pages=2746-2748&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.526745&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true