Positive‐definite self‐dual solutions of Einstein’s field equations
We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A.
Gespeichert in:
Veröffentlicht in: | J. Math. Phys. (N.Y.); (United States) 1983-11, Vol.24 (11), p.2632-2634 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2634 |
---|---|
container_issue | 11 |
container_start_page | 2632 |
container_title | J. Math. Phys. (N.Y.); (United States) |
container_volume | 24 |
creator | LORENZ PETZOLD, D |
description | We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A. |
doi_str_mv | 10.1063/1.525636 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_525636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-412fb171da3d3304c974208636beabc8d82f9b07cf1bd9d35e5b63ab8a1b8f8d3</originalsourceid><addsrcrecordid>eNp90M1KAzEQAOAgCtYq-AiLeNDD1kySTbNHKVULBT3oOeQXI-umbrYFb30Er75en8RtV3oRPA3DfMwfQueAR4A5vYFRQQpO-QEaABZlPuaFOEQDjAnJCRPiGJ2k9IYxgGBsgGZPMYU2rNxm_WWdD3VoXZZc5bf5UlVZitWyDbFOWfTZNNSpdaHerL9T5oOrbOY-lmpXP0VHXlXJnf3GIXq5mz5PHvL54_1scjvPDeG8zRkQr2EMVlFLKWamHDOCRbexdkobYQXxpcZj40Hb0tLCFZpTpYUCLbywdIgu-r4xtUEm0y1sXk2sa2daWXDOgPMOXfXINDGlxnm5aMK7aj4lYLn9kwTZ_6mjlz1dqGRU5RtVm5D2vmRAMYeOXfdsO3F38Z6sYrNvJxfW_2f_jP8B6S-GDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Positive‐definite self‐dual solutions of Einstein’s field equations</title><source>AIP Digital Archive</source><creator>LORENZ PETZOLD, D</creator><creatorcontrib>LORENZ PETZOLD, D ; Fakultaet fuer Physik, Universitaet Konstanz, D-7750 Konstanz, Federal Republic of Germany</creatorcontrib><description>We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.525636</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation ; ALGORITHMS ; ANALYTICAL SOLUTION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; EINSTEIN FIELD EQUATIONS ; EQUATIONS ; Exact sciences and technology ; FIELD EQUATIONS ; General relativity and gravitation ; MATHEMATICAL LOGIC ; MATHEMATICAL SPACE ; MATRICES ; Physics ; RIEMANN SPACE ; SPACE</subject><ispartof>J. Math. Phys. (N.Y.); (United States), 1983-11, Vol.24 (11), p.2632-2634</ispartof><rights>American Institute of Physics</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-412fb171da3d3304c974208636beabc8d82f9b07cf1bd9d35e5b63ab8a1b8f8d3</citedby><cites>FETCH-LOGICAL-c266t-412fb171da3d3304c974208636beabc8d82f9b07cf1bd9d35e5b63ab8a1b8f8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.525636$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27901,27902,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9413061$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5664166$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LORENZ PETZOLD, D</creatorcontrib><creatorcontrib>Fakultaet fuer Physik, Universitaet Konstanz, D-7750 Konstanz, Federal Republic of Germany</creatorcontrib><title>Positive‐definite self‐dual solutions of Einstein’s field equations</title><title>J. Math. Phys. (N.Y.); (United States)</title><description>We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A.</description><subject>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation</subject><subject>ALGORITHMS</subject><subject>ANALYTICAL SOLUTION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>EINSTEIN FIELD EQUATIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FIELD EQUATIONS</subject><subject>General relativity and gravitation</subject><subject>MATHEMATICAL LOGIC</subject><subject>MATHEMATICAL SPACE</subject><subject>MATRICES</subject><subject>Physics</subject><subject>RIEMANN SPACE</subject><subject>SPACE</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQAOAgCtYq-AiLeNDD1kySTbNHKVULBT3oOeQXI-umbrYFb30Er75en8RtV3oRPA3DfMwfQueAR4A5vYFRQQpO-QEaABZlPuaFOEQDjAnJCRPiGJ2k9IYxgGBsgGZPMYU2rNxm_WWdD3VoXZZc5bf5UlVZitWyDbFOWfTZNNSpdaHerL9T5oOrbOY-lmpXP0VHXlXJnf3GIXq5mz5PHvL54_1scjvPDeG8zRkQr2EMVlFLKWamHDOCRbexdkobYQXxpcZj40Hb0tLCFZpTpYUCLbywdIgu-r4xtUEm0y1sXk2sa2daWXDOgPMOXfXINDGlxnm5aMK7aj4lYLn9kwTZ_6mjlz1dqGRU5RtVm5D2vmRAMYeOXfdsO3F38Z6sYrNvJxfW_2f_jP8B6S-GDA</recordid><startdate>198311</startdate><enddate>198311</enddate><creator>LORENZ PETZOLD, D</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198311</creationdate><title>Positive‐definite self‐dual solutions of Einstein’s field equations</title><author>LORENZ PETZOLD, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-412fb171da3d3304c974208636beabc8d82f9b07cf1bd9d35e5b63ab8a1b8f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>657003 - Theoretical & Mathematical Physics- Relativity & Gravitation</topic><topic>ALGORITHMS</topic><topic>ANALYTICAL SOLUTION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>EINSTEIN FIELD EQUATIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FIELD EQUATIONS</topic><topic>General relativity and gravitation</topic><topic>MATHEMATICAL LOGIC</topic><topic>MATHEMATICAL SPACE</topic><topic>MATRICES</topic><topic>Physics</topic><topic>RIEMANN SPACE</topic><topic>SPACE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LORENZ PETZOLD, D</creatorcontrib><creatorcontrib>Fakultaet fuer Physik, Universitaet Konstanz, D-7750 Konstanz, Federal Republic of Germany</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LORENZ PETZOLD, D</au><aucorp>Fakultaet fuer Physik, Universitaet Konstanz, D-7750 Konstanz, Federal Republic of Germany</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive‐definite self‐dual solutions of Einstein’s field equations</atitle><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle><date>1983-11</date><risdate>1983</risdate><volume>24</volume><issue>11</issue><spage>2632</spage><epage>2634</epage><pages>2632-2634</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.525636</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | J. Math. Phys. (N.Y.); (United States), 1983-11, Vol.24 (11), p.2632-2634 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_525636 |
source | AIP Digital Archive |
subjects | 657003 - Theoretical & Mathematical Physics- Relativity & Gravitation ALGORITHMS ANALYTICAL SOLUTION CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Classical general relativity EINSTEIN FIELD EQUATIONS EQUATIONS Exact sciences and technology FIELD EQUATIONS General relativity and gravitation MATHEMATICAL LOGIC MATHEMATICAL SPACE MATRICES Physics RIEMANN SPACE SPACE |
title | Positive‐definite self‐dual solutions of Einstein’s field equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%E2%80%90definite%20self%E2%80%90dual%20solutions%20of%20Einstein%E2%80%99s%20field%20equations&rft.jtitle=J.%20Math.%20Phys.%20(N.Y.);%20(United%20States)&rft.au=LORENZ%20PETZOLD,%20D&rft.aucorp=Fakultaet%20fuer%20Physik,%20Universitaet%20Konstanz,%20D-7750%20Konstanz,%20Federal%20Republic%20of%20Germany&rft.date=1983-11&rft.volume=24&rft.issue=11&rft.spage=2632&rft.epage=2634&rft.pages=2632-2634&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.525636&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |