Positive‐definite self‐dual solutions of Einstein’s field equations

We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math. Phys. (N.Y.); (United States) 1983-11, Vol.24 (11), p.2632-2634
1. Verfasser: LORENZ PETZOLD, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2634
container_issue 11
container_start_page 2632
container_title J. Math. Phys. (N.Y.); (United States)
container_volume 24
creator LORENZ PETZOLD, D
description We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A.
doi_str_mv 10.1063/1.525636
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_525636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-412fb171da3d3304c974208636beabc8d82f9b07cf1bd9d35e5b63ab8a1b8f8d3</originalsourceid><addsrcrecordid>eNp90M1KAzEQAOAgCtYq-AiLeNDD1kySTbNHKVULBT3oOeQXI-umbrYFb30Er75en8RtV3oRPA3DfMwfQueAR4A5vYFRQQpO-QEaABZlPuaFOEQDjAnJCRPiGJ2k9IYxgGBsgGZPMYU2rNxm_WWdD3VoXZZc5bf5UlVZitWyDbFOWfTZNNSpdaHerL9T5oOrbOY-lmpXP0VHXlXJnf3GIXq5mz5PHvL54_1scjvPDeG8zRkQr2EMVlFLKWamHDOCRbexdkobYQXxpcZj40Hb0tLCFZpTpYUCLbywdIgu-r4xtUEm0y1sXk2sa2daWXDOgPMOXfXINDGlxnm5aMK7aj4lYLn9kwTZ_6mjlz1dqGRU5RtVm5D2vmRAMYeOXfdsO3F38Z6sYrNvJxfW_2f_jP8B6S-GDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Positive‐definite self‐dual solutions of Einstein’s field equations</title><source>AIP Digital Archive</source><creator>LORENZ PETZOLD, D</creator><creatorcontrib>LORENZ PETZOLD, D ; Fakultaet fuer Physik, Universitaet Konstanz, D-7750 Konstanz, Federal Republic of Germany</creatorcontrib><description>We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.525636</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation ; ALGORITHMS ; ANALYTICAL SOLUTION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Classical general relativity ; EINSTEIN FIELD EQUATIONS ; EQUATIONS ; Exact sciences and technology ; FIELD EQUATIONS ; General relativity and gravitation ; MATHEMATICAL LOGIC ; MATHEMATICAL SPACE ; MATRICES ; Physics ; RIEMANN SPACE ; SPACE</subject><ispartof>J. Math. Phys. (N.Y.); (United States), 1983-11, Vol.24 (11), p.2632-2634</ispartof><rights>American Institute of Physics</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-412fb171da3d3304c974208636beabc8d82f9b07cf1bd9d35e5b63ab8a1b8f8d3</citedby><cites>FETCH-LOGICAL-c266t-412fb171da3d3304c974208636beabc8d82f9b07cf1bd9d35e5b63ab8a1b8f8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.525636$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,881,1553,27901,27902,76132</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9413061$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5664166$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LORENZ PETZOLD, D</creatorcontrib><creatorcontrib>Fakultaet fuer Physik, Universitaet Konstanz, D-7750 Konstanz, Federal Republic of Germany</creatorcontrib><title>Positive‐definite self‐dual solutions of Einstein’s field equations</title><title>J. Math. Phys. (N.Y.); (United States)</title><description>We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A.</description><subject>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</subject><subject>ALGORITHMS</subject><subject>ANALYTICAL SOLUTION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Classical general relativity</subject><subject>EINSTEIN FIELD EQUATIONS</subject><subject>EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>FIELD EQUATIONS</subject><subject>General relativity and gravitation</subject><subject>MATHEMATICAL LOGIC</subject><subject>MATHEMATICAL SPACE</subject><subject>MATRICES</subject><subject>Physics</subject><subject>RIEMANN SPACE</subject><subject>SPACE</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQAOAgCtYq-AiLeNDD1kySTbNHKVULBT3oOeQXI-umbrYFb30Er75en8RtV3oRPA3DfMwfQueAR4A5vYFRQQpO-QEaABZlPuaFOEQDjAnJCRPiGJ2k9IYxgGBsgGZPMYU2rNxm_WWdD3VoXZZc5bf5UlVZitWyDbFOWfTZNNSpdaHerL9T5oOrbOY-lmpXP0VHXlXJnf3GIXq5mz5PHvL54_1scjvPDeG8zRkQr2EMVlFLKWamHDOCRbexdkobYQXxpcZj40Hb0tLCFZpTpYUCLbywdIgu-r4xtUEm0y1sXk2sa2daWXDOgPMOXfXINDGlxnm5aMK7aj4lYLn9kwTZ_6mjlz1dqGRU5RtVm5D2vmRAMYeOXfdsO3F38Z6sYrNvJxfW_2f_jP8B6S-GDA</recordid><startdate>198311</startdate><enddate>198311</enddate><creator>LORENZ PETZOLD, D</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>198311</creationdate><title>Positive‐definite self‐dual solutions of Einstein’s field equations</title><author>LORENZ PETZOLD, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-412fb171da3d3304c974208636beabc8d82f9b07cf1bd9d35e5b63ab8a1b8f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>657003 - Theoretical &amp; Mathematical Physics- Relativity &amp; Gravitation</topic><topic>ALGORITHMS</topic><topic>ANALYTICAL SOLUTION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Classical general relativity</topic><topic>EINSTEIN FIELD EQUATIONS</topic><topic>EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>FIELD EQUATIONS</topic><topic>General relativity and gravitation</topic><topic>MATHEMATICAL LOGIC</topic><topic>MATHEMATICAL SPACE</topic><topic>MATRICES</topic><topic>Physics</topic><topic>RIEMANN SPACE</topic><topic>SPACE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LORENZ PETZOLD, D</creatorcontrib><creatorcontrib>Fakultaet fuer Physik, Universitaet Konstanz, D-7750 Konstanz, Federal Republic of Germany</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LORENZ PETZOLD, D</au><aucorp>Fakultaet fuer Physik, Universitaet Konstanz, D-7750 Konstanz, Federal Republic of Germany</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive‐definite self‐dual solutions of Einstein’s field equations</atitle><jtitle>J. Math. Phys. (N.Y.); (United States)</jtitle><date>1983-11</date><risdate>1983</risdate><volume>24</volume><issue>11</issue><spage>2632</spage><epage>2634</epage><pages>2632-2634</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We investigate (anti‐) self‐dual Riemann space‐times for diagonal Bianchi types of class A with positive‐definite metrics. A general algorithm to find self‐dual solutions is presented. Explicit solutions are given for all types of class A.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.525636</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof J. Math. Phys. (N.Y.); (United States), 1983-11, Vol.24 (11), p.2632-2634
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_525636
source AIP Digital Archive
subjects 657003 - Theoretical & Mathematical Physics- Relativity & Gravitation
ALGORITHMS
ANALYTICAL SOLUTION
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Classical general relativity
EINSTEIN FIELD EQUATIONS
EQUATIONS
Exact sciences and technology
FIELD EQUATIONS
General relativity and gravitation
MATHEMATICAL LOGIC
MATHEMATICAL SPACE
MATRICES
Physics
RIEMANN SPACE
SPACE
title Positive‐definite self‐dual solutions of Einstein’s field equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%E2%80%90definite%20self%E2%80%90dual%20solutions%20of%20Einstein%E2%80%99s%20field%20equations&rft.jtitle=J.%20Math.%20Phys.%20(N.Y.);%20(United%20States)&rft.au=LORENZ%20PETZOLD,%20D&rft.aucorp=Fakultaet%20fuer%20Physik,%20Universitaet%20Konstanz,%20D-7750%20Konstanz,%20Federal%20Republic%20of%20Germany&rft.date=1983-11&rft.volume=24&rft.issue=11&rft.spage=2632&rft.epage=2634&rft.pages=2632-2634&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.525636&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true