Numerical investigation of central breakup of large bubble induced by liquid jet

A large spherical bubble rising in quiescent liquid generally leads to the formation of a toroidal bubble (central breakup). In this paper, we investigate the bubble dynamics during the central breakup process using the three dimensional Volume of Fluid method implemented in OpenFOAM. The potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2020-03, Vol.32 (3)
Hauptverfasser: Cao, Yuanwei, Macián-Juan, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Cao, Yuanwei
Macián-Juan, Rafael
description A large spherical bubble rising in quiescent liquid generally leads to the formation of a toroidal bubble (central breakup). In this paper, we investigate the bubble dynamics during the central breakup process using the three dimensional Volume of Fluid method implemented in OpenFOAM. The potential energy of the large bubble is converted into the kinetic energy of the liquid jet, resulting in the formation of the toroidal bubble. Before the central breakup of the bubble, a high pressure zone is formed on the top of the bubble due to the collision of the liquid jet with the top of the bubble. We report for the first time that a protrusion is formed on the top of the toroidal bubble for a large spherical bubble rising in quiescent liquid. The velocity of the gas inside the toroidal bubble around the liquid jet is much faster than that in other places after the central breakup, which leads to the formation of the protrusion against the restriction of the surface tension force. We find that the bubble size, liquid viscosity, and density can influence the formation of the toroidal bubble, while the influence of surface tension is negligible. We summarize the above influencing factors into two dimensionless numbers: Galilei (Ga) number and Eötvös number (Eo). In the end, we discover a simple linear relation between the jet Reynolds number and the Ga number by analyzing all numerical experiments.
doi_str_mv 10.1063/1.5144975
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5144975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376027392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-75a9baecd95808d46c6a0d68a67a26e69a8bdd8d4dd2feeef4be0a37be7849363</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oOAJ4XU3Wwymxyl-AVFPeh52Y9J2Zom6SYp9N-7sUUPgqcZ5n3m6yXkktEZo8Bv2SxjaVqI7IhMGM2LWADA8ZgLGgNwdkrOum5FKeVFAhPy9jKs0TujqsjVW-x6t1S9a-qoKSODde-DoD2qz6EdS5XyS4z0oHWFocEOBm2kd1HlNoOz0Qr7c3JSqqrDi0Ocko-H-_f5U7x4fXye3y1iwxPRxyJThVZobJHlNLcpGFDUQq5AqAQQCpVra4NgbVIiYplqpIoLjSJPCw58Sq72c1vfbIZwuFw1g6_DSplwATQR4cFAXe8p45uu81jK1ru18jvJqBwNk0weDAvszZ7tjOu_TfiBt43_BWVry__gv5O_ALNrekY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376027392</pqid></control><display><type>article</type><title>Numerical investigation of central breakup of large bubble induced by liquid jet</title><source>AIP Journals (American Institute of Physics)</source><source>Alma/SFX Local Collection</source><creator>Cao, Yuanwei ; Macián-Juan, Rafael</creator><creatorcontrib>Cao, Yuanwei ; Macián-Juan, Rafael</creatorcontrib><description>A large spherical bubble rising in quiescent liquid generally leads to the formation of a toroidal bubble (central breakup). In this paper, we investigate the bubble dynamics during the central breakup process using the three dimensional Volume of Fluid method implemented in OpenFOAM. The potential energy of the large bubble is converted into the kinetic energy of the liquid jet, resulting in the formation of the toroidal bubble. Before the central breakup of the bubble, a high pressure zone is formed on the top of the bubble due to the collision of the liquid jet with the top of the bubble. We report for the first time that a protrusion is formed on the top of the toroidal bubble for a large spherical bubble rising in quiescent liquid. The velocity of the gas inside the toroidal bubble around the liquid jet is much faster than that in other places after the central breakup, which leads to the formation of the protrusion against the restriction of the surface tension force. We find that the bubble size, liquid viscosity, and density can influence the formation of the toroidal bubble, while the influence of surface tension is negligible. We summarize the above influencing factors into two dimensionless numbers: Galilei (Ga) number and Eötvös number (Eo). In the end, we discover a simple linear relation between the jet Reynolds number and the Ga number by analyzing all numerical experiments.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5144975</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bubbles ; Computational fluid dynamics ; Dimensionless numbers ; Fluid dynamics ; Fluid flow ; Kinetic energy ; Physics ; Potential energy ; Reynolds number ; Surface tension</subject><ispartof>Physics of fluids (1994), 2020-03, Vol.32 (3)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-75a9baecd95808d46c6a0d68a67a26e69a8bdd8d4dd2feeef4be0a37be7849363</citedby><cites>FETCH-LOGICAL-c327t-75a9baecd95808d46c6a0d68a67a26e69a8bdd8d4dd2feeef4be0a37be7849363</cites><orcidid>0000-0002-1526-1444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27926,27927</link.rule.ids></links><search><creatorcontrib>Cao, Yuanwei</creatorcontrib><creatorcontrib>Macián-Juan, Rafael</creatorcontrib><title>Numerical investigation of central breakup of large bubble induced by liquid jet</title><title>Physics of fluids (1994)</title><description>A large spherical bubble rising in quiescent liquid generally leads to the formation of a toroidal bubble (central breakup). In this paper, we investigate the bubble dynamics during the central breakup process using the three dimensional Volume of Fluid method implemented in OpenFOAM. The potential energy of the large bubble is converted into the kinetic energy of the liquid jet, resulting in the formation of the toroidal bubble. Before the central breakup of the bubble, a high pressure zone is formed on the top of the bubble due to the collision of the liquid jet with the top of the bubble. We report for the first time that a protrusion is formed on the top of the toroidal bubble for a large spherical bubble rising in quiescent liquid. The velocity of the gas inside the toroidal bubble around the liquid jet is much faster than that in other places after the central breakup, which leads to the formation of the protrusion against the restriction of the surface tension force. We find that the bubble size, liquid viscosity, and density can influence the formation of the toroidal bubble, while the influence of surface tension is negligible. We summarize the above influencing factors into two dimensionless numbers: Galilei (Ga) number and Eötvös number (Eo). In the end, we discover a simple linear relation between the jet Reynolds number and the Ga number by analyzing all numerical experiments.</description><subject>Bubbles</subject><subject>Computational fluid dynamics</subject><subject>Dimensionless numbers</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Kinetic energy</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Reynolds number</subject><subject>Surface tension</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oOAJ4XU3Wwymxyl-AVFPeh52Y9J2Zom6SYp9N-7sUUPgqcZ5n3m6yXkktEZo8Bv2SxjaVqI7IhMGM2LWADA8ZgLGgNwdkrOum5FKeVFAhPy9jKs0TujqsjVW-x6t1S9a-qoKSODde-DoD2qz6EdS5XyS4z0oHWFocEOBm2kd1HlNoOz0Qr7c3JSqqrDi0Ocko-H-_f5U7x4fXye3y1iwxPRxyJThVZobJHlNLcpGFDUQq5AqAQQCpVra4NgbVIiYplqpIoLjSJPCw58Sq72c1vfbIZwuFw1g6_DSplwATQR4cFAXe8p45uu81jK1ru18jvJqBwNk0weDAvszZ7tjOu_TfiBt43_BWVry__gv5O_ALNrekY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Cao, Yuanwei</creator><creator>Macián-Juan, Rafael</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1526-1444</orcidid></search><sort><creationdate>20200301</creationdate><title>Numerical investigation of central breakup of large bubble induced by liquid jet</title><author>Cao, Yuanwei ; Macián-Juan, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-75a9baecd95808d46c6a0d68a67a26e69a8bdd8d4dd2feeef4be0a37be7849363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bubbles</topic><topic>Computational fluid dynamics</topic><topic>Dimensionless numbers</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Kinetic energy</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Reynolds number</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yuanwei</creatorcontrib><creatorcontrib>Macián-Juan, Rafael</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yuanwei</au><au>Macián-Juan, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of central breakup of large bubble induced by liquid jet</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A large spherical bubble rising in quiescent liquid generally leads to the formation of a toroidal bubble (central breakup). In this paper, we investigate the bubble dynamics during the central breakup process using the three dimensional Volume of Fluid method implemented in OpenFOAM. The potential energy of the large bubble is converted into the kinetic energy of the liquid jet, resulting in the formation of the toroidal bubble. Before the central breakup of the bubble, a high pressure zone is formed on the top of the bubble due to the collision of the liquid jet with the top of the bubble. We report for the first time that a protrusion is formed on the top of the toroidal bubble for a large spherical bubble rising in quiescent liquid. The velocity of the gas inside the toroidal bubble around the liquid jet is much faster than that in other places after the central breakup, which leads to the formation of the protrusion against the restriction of the surface tension force. We find that the bubble size, liquid viscosity, and density can influence the formation of the toroidal bubble, while the influence of surface tension is negligible. We summarize the above influencing factors into two dimensionless numbers: Galilei (Ga) number and Eötvös number (Eo). In the end, we discover a simple linear relation between the jet Reynolds number and the Ga number by analyzing all numerical experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5144975</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1526-1444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-03, Vol.32 (3)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_5144975
source AIP Journals (American Institute of Physics); Alma/SFX Local Collection
subjects Bubbles
Computational fluid dynamics
Dimensionless numbers
Fluid dynamics
Fluid flow
Kinetic energy
Physics
Potential energy
Reynolds number
Surface tension
title Numerical investigation of central breakup of large bubble induced by liquid jet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20central%20breakup%20of%20large%20bubble%20induced%20by%20liquid%20jet&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Cao,%20Yuanwei&rft.date=2020-03-01&rft.volume=32&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5144975&rft_dat=%3Cproquest_cross%3E2376027392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376027392&rft_id=info:pmid/&rfr_iscdi=true