Analysis of shock wave induced by underwater pulsed discharge using discharge current interception
Electrohydraulic shock wave (EHSW) is seemingly one of the simplest and most common products of microsecond pulsed discharge (μsPD) in water; however, its generation process remains far less clear. To study the influence of current waveforms on the generation of an EHSW, we conducted discharge curre...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-04, Vol.127 (14) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 127 |
creator | Liu, Si-Wei Liu, Yi Ren, Yi-Jia Lin, Fu-Chang Li, Hua Zhao, Yong |
description | Electrohydraulic shock wave (EHSW) is seemingly one of the simplest and most common products of microsecond pulsed discharge (μsPD) in water; however, its generation process remains far less clear. To study the influence of current waveforms on the generation of an EHSW, we conducted discharge current interception experiments using a bypass branch in the circuit. The current interception time Δt is properly controlled so that the discharge current through the water gap can be terminated at a chosen time. Results show that the peak pressure Pm is first linearly increasing with Δt, and then Pm reaches a stable value. The expansion of the spark channel with increasing velocities will enhance the peak pressure. This phase can be regarded as the accelerated expansion phase (AEP) of the piston theory. The transition area of the Pm–Δt relationship of this experimental setup shows that the AEP lasts for about tm = 5 μs. After the AEP, the deposited energy will help to maintain a higher pressure in the falling edge of the pressure waves. The full width at half maximum of the waveforms finally approaches 12.5 μs in our tests. The experimental results provide evidence of the piston theory in interpreting the generation of EHSW induced by μsPD. |
doi_str_mv | 10.1063/1.5143080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5143080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389068524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6bee85bb1cfb2c68e2155aa14a229d88ffd48354491fc246b114a94b1b12578d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWTDbZTY6l-A8KXvQckmzSbq27a7Jb6bc3pUUFwdMwM7_34D2ELoFMgBT5LUw4sJwIcoRGQITMSs7JMRoRQiETspSn6CzGFSEAIpcjZKaNXm9jHXHrcVy29g1_6o3DdVMN1lXYbPHQVC586t4F3A3rmI5VHe1Sh4XDQ6ybxa_dDiG4pk_yhFvX9XXbnKMTr5Pu4jDH6PX-7mX2mM2fH55m03lmc1r2WWGcE9wYsN5QWwhHgXOtgWlKZSWE9xUTOWdMgreUFQbSSzIDBigvRZWP0dXetwvtx-Bir1btEFK8qGguJCkEpyxR13vKhjbG4LzqQv2uw1YBUbsKFahDhYm92bPR1r3eZfmGN234AVVX-f_gv85f71WAaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389068524</pqid></control><display><type>article</type><title>Analysis of shock wave induced by underwater pulsed discharge using discharge current interception</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, Si-Wei ; Liu, Yi ; Ren, Yi-Jia ; Lin, Fu-Chang ; Li, Hua ; Zhao, Yong</creator><creatorcontrib>Liu, Si-Wei ; Liu, Yi ; Ren, Yi-Jia ; Lin, Fu-Chang ; Li, Hua ; Zhao, Yong</creatorcontrib><description>Electrohydraulic shock wave (EHSW) is seemingly one of the simplest and most common products of microsecond pulsed discharge (μsPD) in water; however, its generation process remains far less clear. To study the influence of current waveforms on the generation of an EHSW, we conducted discharge current interception experiments using a bypass branch in the circuit. The current interception time Δt is properly controlled so that the discharge current through the water gap can be terminated at a chosen time. Results show that the peak pressure Pm is first linearly increasing with Δt, and then Pm reaches a stable value. The expansion of the spark channel with increasing velocities will enhance the peak pressure. This phase can be regarded as the accelerated expansion phase (AEP) of the piston theory. The transition area of the Pm–Δt relationship of this experimental setup shows that the AEP lasts for about tm = 5 μs. After the AEP, the deposited energy will help to maintain a higher pressure in the falling edge of the pressure waves. The full width at half maximum of the waveforms finally approaches 12.5 μs in our tests. The experimental results provide evidence of the piston theory in interpreting the generation of EHSW induced by μsPD.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5143080</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Circuits ; Elastic waves ; Interception ; Peak pressure ; Piston theory ; Shock waves ; Water discharge ; Waveforms</subject><ispartof>Journal of applied physics, 2020-04, Vol.127 (14)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-6bee85bb1cfb2c68e2155aa14a229d88ffd48354491fc246b114a94b1b12578d3</citedby><cites>FETCH-LOGICAL-c327t-6bee85bb1cfb2c68e2155aa14a229d88ffd48354491fc246b114a94b1b12578d3</cites><orcidid>0000-0002-3903-481X ; 0000-0001-7060-8167 ; 0000-0001-9481-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5143080$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Liu, Si-Wei</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Ren, Yi-Jia</creatorcontrib><creatorcontrib>Lin, Fu-Chang</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><title>Analysis of shock wave induced by underwater pulsed discharge using discharge current interception</title><title>Journal of applied physics</title><description>Electrohydraulic shock wave (EHSW) is seemingly one of the simplest and most common products of microsecond pulsed discharge (μsPD) in water; however, its generation process remains far less clear. To study the influence of current waveforms on the generation of an EHSW, we conducted discharge current interception experiments using a bypass branch in the circuit. The current interception time Δt is properly controlled so that the discharge current through the water gap can be terminated at a chosen time. Results show that the peak pressure Pm is first linearly increasing with Δt, and then Pm reaches a stable value. The expansion of the spark channel with increasing velocities will enhance the peak pressure. This phase can be regarded as the accelerated expansion phase (AEP) of the piston theory. The transition area of the Pm–Δt relationship of this experimental setup shows that the AEP lasts for about tm = 5 μs. After the AEP, the deposited energy will help to maintain a higher pressure in the falling edge of the pressure waves. The full width at half maximum of the waveforms finally approaches 12.5 μs in our tests. The experimental results provide evidence of the piston theory in interpreting the generation of EHSW induced by μsPD.</description><subject>Applied physics</subject><subject>Circuits</subject><subject>Elastic waves</subject><subject>Interception</subject><subject>Peak pressure</subject><subject>Piston theory</subject><subject>Shock waves</subject><subject>Water discharge</subject><subject>Waveforms</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LWTDbZTY6l-A8KXvQckmzSbq27a7Jb6bc3pUUFwdMwM7_34D2ELoFMgBT5LUw4sJwIcoRGQITMSs7JMRoRQiETspSn6CzGFSEAIpcjZKaNXm9jHXHrcVy29g1_6o3DdVMN1lXYbPHQVC586t4F3A3rmI5VHe1Sh4XDQ6ybxa_dDiG4pk_yhFvX9XXbnKMTr5Pu4jDH6PX-7mX2mM2fH55m03lmc1r2WWGcE9wYsN5QWwhHgXOtgWlKZSWE9xUTOWdMgreUFQbSSzIDBigvRZWP0dXetwvtx-Bir1btEFK8qGguJCkEpyxR13vKhjbG4LzqQv2uw1YBUbsKFahDhYm92bPR1r3eZfmGN234AVVX-f_gv85f71WAaA</recordid><startdate>20200414</startdate><enddate>20200414</enddate><creator>Liu, Si-Wei</creator><creator>Liu, Yi</creator><creator>Ren, Yi-Jia</creator><creator>Lin, Fu-Chang</creator><creator>Li, Hua</creator><creator>Zhao, Yong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3903-481X</orcidid><orcidid>https://orcid.org/0000-0001-7060-8167</orcidid><orcidid>https://orcid.org/0000-0001-9481-2429</orcidid></search><sort><creationdate>20200414</creationdate><title>Analysis of shock wave induced by underwater pulsed discharge using discharge current interception</title><author>Liu, Si-Wei ; Liu, Yi ; Ren, Yi-Jia ; Lin, Fu-Chang ; Li, Hua ; Zhao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6bee85bb1cfb2c68e2155aa14a229d88ffd48354491fc246b114a94b1b12578d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Circuits</topic><topic>Elastic waves</topic><topic>Interception</topic><topic>Peak pressure</topic><topic>Piston theory</topic><topic>Shock waves</topic><topic>Water discharge</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Si-Wei</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Ren, Yi-Jia</creatorcontrib><creatorcontrib>Lin, Fu-Chang</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Si-Wei</au><au>Liu, Yi</au><au>Ren, Yi-Jia</au><au>Lin, Fu-Chang</au><au>Li, Hua</au><au>Zhao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of shock wave induced by underwater pulsed discharge using discharge current interception</atitle><jtitle>Journal of applied physics</jtitle><date>2020-04-14</date><risdate>2020</risdate><volume>127</volume><issue>14</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Electrohydraulic shock wave (EHSW) is seemingly one of the simplest and most common products of microsecond pulsed discharge (μsPD) in water; however, its generation process remains far less clear. To study the influence of current waveforms on the generation of an EHSW, we conducted discharge current interception experiments using a bypass branch in the circuit. The current interception time Δt is properly controlled so that the discharge current through the water gap can be terminated at a chosen time. Results show that the peak pressure Pm is first linearly increasing with Δt, and then Pm reaches a stable value. The expansion of the spark channel with increasing velocities will enhance the peak pressure. This phase can be regarded as the accelerated expansion phase (AEP) of the piston theory. The transition area of the Pm–Δt relationship of this experimental setup shows that the AEP lasts for about tm = 5 μs. After the AEP, the deposited energy will help to maintain a higher pressure in the falling edge of the pressure waves. The full width at half maximum of the waveforms finally approaches 12.5 μs in our tests. The experimental results provide evidence of the piston theory in interpreting the generation of EHSW induced by μsPD.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5143080</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3903-481X</orcidid><orcidid>https://orcid.org/0000-0001-7060-8167</orcidid><orcidid>https://orcid.org/0000-0001-9481-2429</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-04, Vol.127 (14) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5143080 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Circuits Elastic waves Interception Peak pressure Piston theory Shock waves Water discharge Waveforms |
title | Analysis of shock wave induced by underwater pulsed discharge using discharge current interception |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20shock%20wave%20induced%20by%20underwater%20pulsed%20discharge%20using%20discharge%20current%20interception&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Liu,%20Si-Wei&rft.date=2020-04-14&rft.volume=127&rft.issue=14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5143080&rft_dat=%3Cproquest_cross%3E2389068524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389068524&rft_id=info:pmid/&rfr_iscdi=true |