Solutions for the Lévy-Leblond or parabolic Dirac equation and its generalizations

In this paper, we determine solutions for the Lévy-Leblond operator or a parabolic Dirac operator in terms of hypergeometric functions and spherical harmonics. We subsequently generalize our approach to a wider class of Dirac operators depending on 4 parameters.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2020-01, Vol.61 (1)
Hauptverfasser: Bao, Sijia, Constales, Denis, De Bie, Hendrik, Mertens, Teppo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematical physics
container_volume 61
creator Bao, Sijia
Constales, Denis
De Bie, Hendrik
Mertens, Teppo
description In this paper, we determine solutions for the Lévy-Leblond operator or a parabolic Dirac operator in terms of hypergeometric functions and spherical harmonics. We subsequently generalize our approach to a wider class of Dirac operators depending on 4 parameters.
doi_str_mv 10.1063/1.5135503
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5135503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343810130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-7168328892f822d12b1409e4c8c720e7d830bb0fec8c7831e2fd9290ae3e15563</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4ufIOAK4WO9yb9SZcyjj9QcDG6DmmbaobadJJ2YHwjn8MXs_ODLgRXF8797rmcQ8g5wgQh5tc4iZBHEfADMkIQaZDEkTgkIwDGAhYKcUxOvF8AIIowHJH53NZ9Z2zjaWUd7d40zb4-V-sg03ltm5IOYqucym1tCnprnCqoXvZqc0LVsDedp6-60U7V5mMr-1NyVKna67P9HJOXu9nz9CHInu4fpzdZUPCYdUGCseBMiJRVgrESWY4hpDosRJEw0EkpOOQ5VHojCI6aVWXKUlCaa4yimI_Jxc63dXbZa9_Jhe1dM7yUjIdcICCHgbrcUYWz3jtdydaZd-XWEkFuOpMo950N7NWO9YXptmF-4JV1v6Bsy-o_-K_zN3ameew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343810130</pqid></control><display><type>article</type><title>Solutions for the Lévy-Leblond or parabolic Dirac equation and its generalizations</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><creator>Bao, Sijia ; Constales, Denis ; De Bie, Hendrik ; Mertens, Teppo</creator><creatorcontrib>Bao, Sijia ; Constales, Denis ; De Bie, Hendrik ; Mertens, Teppo</creatorcontrib><description>In this paper, we determine solutions for the Lévy-Leblond operator or a parabolic Dirac operator in terms of hypergeometric functions and spherical harmonics. We subsequently generalize our approach to a wider class of Dirac operators depending on 4 parameters.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5135503</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Dirac equation ; Hypergeometric functions ; Operators (mathematics) ; Physics ; Spherical harmonics</subject><ispartof>Journal of mathematical physics, 2020-01, Vol.61 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-7168328892f822d12b1409e4c8c720e7d830bb0fec8c7831e2fd9290ae3e15563</citedby><cites>FETCH-LOGICAL-c362t-7168328892f822d12b1409e4c8c720e7d830bb0fec8c7831e2fd9290ae3e15563</cites><orcidid>0000-0002-3681-559X ; 0000-0003-3806-7836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5135503$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Bao, Sijia</creatorcontrib><creatorcontrib>Constales, Denis</creatorcontrib><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Mertens, Teppo</creatorcontrib><title>Solutions for the Lévy-Leblond or parabolic Dirac equation and its generalizations</title><title>Journal of mathematical physics</title><description>In this paper, we determine solutions for the Lévy-Leblond operator or a parabolic Dirac operator in terms of hypergeometric functions and spherical harmonics. We subsequently generalize our approach to a wider class of Dirac operators depending on 4 parameters.</description><subject>Dirac equation</subject><subject>Hypergeometric functions</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Spherical harmonics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4ufIOAK4WO9yb9SZcyjj9QcDG6DmmbaobadJJ2YHwjn8MXs_ODLgRXF8797rmcQ8g5wgQh5tc4iZBHEfADMkIQaZDEkTgkIwDGAhYKcUxOvF8AIIowHJH53NZ9Z2zjaWUd7d40zb4-V-sg03ltm5IOYqucym1tCnprnCqoXvZqc0LVsDedp6-60U7V5mMr-1NyVKna67P9HJOXu9nz9CHInu4fpzdZUPCYdUGCseBMiJRVgrESWY4hpDosRJEw0EkpOOQ5VHojCI6aVWXKUlCaa4yimI_Jxc63dXbZa9_Jhe1dM7yUjIdcICCHgbrcUYWz3jtdydaZd-XWEkFuOpMo950N7NWO9YXptmF-4JV1v6Bsy-o_-K_zN3ameew</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Bao, Sijia</creator><creator>Constales, Denis</creator><creator>De Bie, Hendrik</creator><creator>Mertens, Teppo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3681-559X</orcidid><orcidid>https://orcid.org/0000-0003-3806-7836</orcidid></search><sort><creationdate>20200101</creationdate><title>Solutions for the Lévy-Leblond or parabolic Dirac equation and its generalizations</title><author>Bao, Sijia ; Constales, Denis ; De Bie, Hendrik ; Mertens, Teppo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-7168328892f822d12b1409e4c8c720e7d830bb0fec8c7831e2fd9290ae3e15563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dirac equation</topic><topic>Hypergeometric functions</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Sijia</creatorcontrib><creatorcontrib>Constales, Denis</creatorcontrib><creatorcontrib>De Bie, Hendrik</creatorcontrib><creatorcontrib>Mertens, Teppo</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Sijia</au><au>Constales, Denis</au><au>De Bie, Hendrik</au><au>Mertens, Teppo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutions for the Lévy-Leblond or parabolic Dirac equation and its generalizations</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>61</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this paper, we determine solutions for the Lévy-Leblond operator or a parabolic Dirac operator in terms of hypergeometric functions and spherical harmonics. We subsequently generalize our approach to a wider class of Dirac operators depending on 4 parameters.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5135503</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3681-559X</orcidid><orcidid>https://orcid.org/0000-0003-3806-7836</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2020-01, Vol.61 (1)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_5135503
source AIP Journals; Alma/SFX Local Collection
subjects Dirac equation
Hypergeometric functions
Operators (mathematics)
Physics
Spherical harmonics
title Solutions for the Lévy-Leblond or parabolic Dirac equation and its generalizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutions%20for%20the%20L%C3%A9vy-Leblond%20or%20parabolic%20Dirac%20equation%20and%20its%20generalizations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Bao,%20Sijia&rft.date=2020-01-01&rft.volume=61&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5135503&rft_dat=%3Cproquest_cross%3E2343810130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343810130&rft_id=info:pmid/&rfr_iscdi=true