A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations

In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2020-04, Vol.30 (4), p.043125-043125
Hauptverfasser: Wang, Mengjiao, Li, Jianhui, Yu, Samson Shenglong, Zhang, Xinan, Li, Zhijun, Iu, Herbert H. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043125
container_issue 4
container_start_page 043125
container_title Chaos (Woodbury, N.Y.)
container_volume 30
creator Wang, Mengjiao
Li, Jianhui
Yu, Samson Shenglong
Zhang, Xinan
Li, Zhijun
Iu, Herbert H. C.
description In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors resulting from the proposed chaotic system will enter different oscillating states or have topological change when the initial value varies. Furthermore, some novel bursting oscillations and bifurcation mechanism are revealed. Stability and bifurcation of the proposed 3D non-autonomous system are comprehensively investigated to analyze the causes of the observed dynamics through a range of analytical methods, including bifurcation diagram, Lyapunov exponent spectrum, and sequence and phase diagrams. Software simulation and hardware experimentation are conducted in this study, which verify the dynamic behaviors of the proposed chaotic system. This study will create a new perspective and dimension of perceiving non-autonomous chaotic systems and exploring their applicability in real-world engineering applications.
doi_str_mv 10.1063/1.5131186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5131186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397673207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-3203316f98fe478b973aca3e424ae92b91efd942b4bdd06e6dab8772cb67eb973</originalsourceid><addsrcrecordid>eNp90Etv1DAQB3ALUdFSOPAFkCUugJTisbN2cqzKq1IlLnCO_JhQV4m92E5hvz0OuxSplTjNHH6ax5-QF8DOgEnxDs42IAA6-YicAOv6RsmOP177TdvAhrFj8jTnG8YYcLF5Qo5FLUpKcUKuz2mItzhR8b42odFLiSHOcck073LBmf705ZpuddIzluStnqYdxV_WF3RUmyU4HQp1u6BnbzPVwVGzpFx8-E5jtn6adPEx5GfkaNRTxueHekq-ffzw9eJzc_Xl0-XF-VVjBYjSCM6EADn23Yit6kyvhLZaYMtbjT03PeDo-pab1jjHJEqnTacUt0YqXPUpeb2fu03xx4K5DLPPFusZAetXAxe9kqquWemre_QmLinU61bFAVTHoao3e2VTzDnhOGyTn3XaDcCGNf4BhkP81b48TFzMjO5O_s27grd7UJMpf4K5M7cx_Zs0bN34P_xw9W-Yv5xE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392117821</pqid></control><display><type>article</type><title>A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Mengjiao ; Li, Jianhui ; Yu, Samson Shenglong ; Zhang, Xinan ; Li, Zhijun ; Iu, Herbert H. C.</creator><creatorcontrib>Wang, Mengjiao ; Li, Jianhui ; Yu, Samson Shenglong ; Zhang, Xinan ; Li, Zhijun ; Iu, Herbert H. C.</creatorcontrib><description>In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors resulting from the proposed chaotic system will enter different oscillating states or have topological change when the initial value varies. Furthermore, some novel bursting oscillations and bifurcation mechanism are revealed. Stability and bifurcation of the proposed 3D non-autonomous system are comprehensively investigated to analyze the causes of the observed dynamics through a range of analytical methods, including bifurcation diagram, Lyapunov exponent spectrum, and sequence and phase diagrams. Software simulation and hardware experimentation are conducted in this study, which verify the dynamic behaviors of the proposed chaotic system. This study will create a new perspective and dimension of perceiving non-autonomous chaotic systems and exploring their applicability in real-world engineering applications.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5131186</identifier><identifier>PMID: 32357663</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bifurcations ; Bursting ; Chaos theory ; Excitation ; Experimentation ; Liapunov exponents ; Oscillations ; Phase diagrams ; System dynamics</subject><ispartof>Chaos (Woodbury, N.Y.), 2020-04, Vol.30 (4), p.043125-043125</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-3203316f98fe478b973aca3e424ae92b91efd942b4bdd06e6dab8772cb67eb973</citedby><cites>FETCH-LOGICAL-c313t-3203316f98fe478b973aca3e424ae92b91efd942b4bdd06e6dab8772cb67eb973</cites><orcidid>0000-0002-2983-7344 ; 0000-0002-9472-8785 ; 0000-0003-0311-4532 ; 0000000294728785 ; 0000000229837344 ; 0000000303114532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32357663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Mengjiao</creatorcontrib><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Yu, Samson Shenglong</creatorcontrib><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Iu, Herbert H. C.</creatorcontrib><title>A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors resulting from the proposed chaotic system will enter different oscillating states or have topological change when the initial value varies. Furthermore, some novel bursting oscillations and bifurcation mechanism are revealed. Stability and bifurcation of the proposed 3D non-autonomous system are comprehensively investigated to analyze the causes of the observed dynamics through a range of analytical methods, including bifurcation diagram, Lyapunov exponent spectrum, and sequence and phase diagrams. Software simulation and hardware experimentation are conducted in this study, which verify the dynamic behaviors of the proposed chaotic system. This study will create a new perspective and dimension of perceiving non-autonomous chaotic systems and exploring their applicability in real-world engineering applications.</description><subject>Bifurcations</subject><subject>Bursting</subject><subject>Chaos theory</subject><subject>Excitation</subject><subject>Experimentation</subject><subject>Liapunov exponents</subject><subject>Oscillations</subject><subject>Phase diagrams</subject><subject>System dynamics</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90Etv1DAQB3ALUdFSOPAFkCUugJTisbN2cqzKq1IlLnCO_JhQV4m92E5hvz0OuxSplTjNHH6ax5-QF8DOgEnxDs42IAA6-YicAOv6RsmOP177TdvAhrFj8jTnG8YYcLF5Qo5FLUpKcUKuz2mItzhR8b42odFLiSHOcck073LBmf705ZpuddIzluStnqYdxV_WF3RUmyU4HQp1u6BnbzPVwVGzpFx8-E5jtn6adPEx5GfkaNRTxueHekq-ffzw9eJzc_Xl0-XF-VVjBYjSCM6EADn23Yit6kyvhLZaYMtbjT03PeDo-pab1jjHJEqnTacUt0YqXPUpeb2fu03xx4K5DLPPFusZAetXAxe9kqquWemre_QmLinU61bFAVTHoao3e2VTzDnhOGyTn3XaDcCGNf4BhkP81b48TFzMjO5O_s27grd7UJMpf4K5M7cx_Zs0bN34P_xw9W-Yv5xE</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Wang, Mengjiao</creator><creator>Li, Jianhui</creator><creator>Yu, Samson Shenglong</creator><creator>Zhang, Xinan</creator><creator>Li, Zhijun</creator><creator>Iu, Herbert H. C.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2983-7344</orcidid><orcidid>https://orcid.org/0000-0002-9472-8785</orcidid><orcidid>https://orcid.org/0000-0003-0311-4532</orcidid><orcidid>https://orcid.org/0000000294728785</orcidid><orcidid>https://orcid.org/0000000229837344</orcidid><orcidid>https://orcid.org/0000000303114532</orcidid></search><sort><creationdate>202004</creationdate><title>A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations</title><author>Wang, Mengjiao ; Li, Jianhui ; Yu, Samson Shenglong ; Zhang, Xinan ; Li, Zhijun ; Iu, Herbert H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-3203316f98fe478b973aca3e424ae92b91efd942b4bdd06e6dab8772cb67eb973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bifurcations</topic><topic>Bursting</topic><topic>Chaos theory</topic><topic>Excitation</topic><topic>Experimentation</topic><topic>Liapunov exponents</topic><topic>Oscillations</topic><topic>Phase diagrams</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mengjiao</creatorcontrib><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Yu, Samson Shenglong</creatorcontrib><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Iu, Herbert H. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mengjiao</au><au>Li, Jianhui</au><au>Yu, Samson Shenglong</au><au>Zhang, Xinan</au><au>Li, Zhijun</au><au>Iu, Herbert H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2020-04</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>043125</spage><epage>043125</epage><pages>043125-043125</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors resulting from the proposed chaotic system will enter different oscillating states or have topological change when the initial value varies. Furthermore, some novel bursting oscillations and bifurcation mechanism are revealed. Stability and bifurcation of the proposed 3D non-autonomous system are comprehensively investigated to analyze the causes of the observed dynamics through a range of analytical methods, including bifurcation diagram, Lyapunov exponent spectrum, and sequence and phase diagrams. Software simulation and hardware experimentation are conducted in this study, which verify the dynamic behaviors of the proposed chaotic system. This study will create a new perspective and dimension of perceiving non-autonomous chaotic systems and exploring their applicability in real-world engineering applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32357663</pmid><doi>10.1063/1.5131186</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2983-7344</orcidid><orcidid>https://orcid.org/0000-0002-9472-8785</orcidid><orcidid>https://orcid.org/0000-0003-0311-4532</orcidid><orcidid>https://orcid.org/0000000294728785</orcidid><orcidid>https://orcid.org/0000000229837344</orcidid><orcidid>https://orcid.org/0000000303114532</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2020-04, Vol.30 (4), p.043125-043125
issn 1054-1500
1089-7682
language eng
recordid cdi_crossref_primary_10_1063_1_5131186
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bifurcations
Bursting
Chaos theory
Excitation
Experimentation
Liapunov exponents
Oscillations
Phase diagrams
System dynamics
title A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%203D%20non-autonomous%20system%20with%20parametrically%20excited%20abundant%20dynamics%20and%20bursting%20oscillations&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wang,%20Mengjiao&rft.date=2020-04&rft.volume=30&rft.issue=4&rft.spage=043125&rft.epage=043125&rft.pages=043125-043125&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5131186&rft_dat=%3Cproquest_cross%3E2397673207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392117821&rft_id=info:pmid/32357663&rfr_iscdi=true