A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations
In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors r...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2020-04, Vol.30 (4), p.043125-043125 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 043125 |
---|---|
container_issue | 4 |
container_start_page | 043125 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 30 |
creator | Wang, Mengjiao Li, Jianhui Yu, Samson Shenglong Zhang, Xinan Li, Zhijun Iu, Herbert H. C. |
description | In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors resulting from the proposed chaotic system will enter different oscillating states or have topological change when the initial value varies. Furthermore, some novel bursting oscillations and bifurcation mechanism are revealed. Stability and bifurcation of the proposed 3D non-autonomous system are comprehensively investigated to analyze the causes of the observed dynamics through a range of analytical methods, including bifurcation diagram, Lyapunov exponent spectrum, and sequence and phase diagrams. Software simulation and hardware experimentation are conducted in this study, which verify the dynamic behaviors of the proposed chaotic system. This study will create a new perspective and dimension of perceiving non-autonomous chaotic systems and exploring their applicability in real-world engineering applications. |
doi_str_mv | 10.1063/1.5131186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5131186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397673207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-3203316f98fe478b973aca3e424ae92b91efd942b4bdd06e6dab8772cb67eb973</originalsourceid><addsrcrecordid>eNp90Etv1DAQB3ALUdFSOPAFkCUugJTisbN2cqzKq1IlLnCO_JhQV4m92E5hvz0OuxSplTjNHH6ax5-QF8DOgEnxDs42IAA6-YicAOv6RsmOP177TdvAhrFj8jTnG8YYcLF5Qo5FLUpKcUKuz2mItzhR8b42odFLiSHOcck073LBmf705ZpuddIzluStnqYdxV_WF3RUmyU4HQp1u6BnbzPVwVGzpFx8-E5jtn6adPEx5GfkaNRTxueHekq-ffzw9eJzc_Xl0-XF-VVjBYjSCM6EADn23Yit6kyvhLZaYMtbjT03PeDo-pab1jjHJEqnTacUt0YqXPUpeb2fu03xx4K5DLPPFusZAetXAxe9kqquWemre_QmLinU61bFAVTHoao3e2VTzDnhOGyTn3XaDcCGNf4BhkP81b48TFzMjO5O_s27grd7UJMpf4K5M7cx_Zs0bN34P_xw9W-Yv5xE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392117821</pqid></control><display><type>article</type><title>A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Mengjiao ; Li, Jianhui ; Yu, Samson Shenglong ; Zhang, Xinan ; Li, Zhijun ; Iu, Herbert H. C.</creator><creatorcontrib>Wang, Mengjiao ; Li, Jianhui ; Yu, Samson Shenglong ; Zhang, Xinan ; Li, Zhijun ; Iu, Herbert H. C.</creatorcontrib><description>In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors resulting from the proposed chaotic system will enter different oscillating states or have topological change when the initial value varies. Furthermore, some novel bursting oscillations and bifurcation mechanism are revealed. Stability and bifurcation of the proposed 3D non-autonomous system are comprehensively investigated to analyze the causes of the observed dynamics through a range of analytical methods, including bifurcation diagram, Lyapunov exponent spectrum, and sequence and phase diagrams. Software simulation and hardware experimentation are conducted in this study, which verify the dynamic behaviors of the proposed chaotic system. This study will create a new perspective and dimension of perceiving non-autonomous chaotic systems and exploring their applicability in real-world engineering applications.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5131186</identifier><identifier>PMID: 32357663</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bifurcations ; Bursting ; Chaos theory ; Excitation ; Experimentation ; Liapunov exponents ; Oscillations ; Phase diagrams ; System dynamics</subject><ispartof>Chaos (Woodbury, N.Y.), 2020-04, Vol.30 (4), p.043125-043125</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-3203316f98fe478b973aca3e424ae92b91efd942b4bdd06e6dab8772cb67eb973</citedby><cites>FETCH-LOGICAL-c313t-3203316f98fe478b973aca3e424ae92b91efd942b4bdd06e6dab8772cb67eb973</cites><orcidid>0000-0002-2983-7344 ; 0000-0002-9472-8785 ; 0000-0003-0311-4532 ; 0000000294728785 ; 0000000229837344 ; 0000000303114532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32357663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Mengjiao</creatorcontrib><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Yu, Samson Shenglong</creatorcontrib><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Iu, Herbert H. C.</creatorcontrib><title>A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors resulting from the proposed chaotic system will enter different oscillating states or have topological change when the initial value varies. Furthermore, some novel bursting oscillations and bifurcation mechanism are revealed. Stability and bifurcation of the proposed 3D non-autonomous system are comprehensively investigated to analyze the causes of the observed dynamics through a range of analytical methods, including bifurcation diagram, Lyapunov exponent spectrum, and sequence and phase diagrams. Software simulation and hardware experimentation are conducted in this study, which verify the dynamic behaviors of the proposed chaotic system. This study will create a new perspective and dimension of perceiving non-autonomous chaotic systems and exploring their applicability in real-world engineering applications.</description><subject>Bifurcations</subject><subject>Bursting</subject><subject>Chaos theory</subject><subject>Excitation</subject><subject>Experimentation</subject><subject>Liapunov exponents</subject><subject>Oscillations</subject><subject>Phase diagrams</subject><subject>System dynamics</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90Etv1DAQB3ALUdFSOPAFkCUugJTisbN2cqzKq1IlLnCO_JhQV4m92E5hvz0OuxSplTjNHH6ax5-QF8DOgEnxDs42IAA6-YicAOv6RsmOP177TdvAhrFj8jTnG8YYcLF5Qo5FLUpKcUKuz2mItzhR8b42odFLiSHOcck073LBmf705ZpuddIzluStnqYdxV_WF3RUmyU4HQp1u6BnbzPVwVGzpFx8-E5jtn6adPEx5GfkaNRTxueHekq-ffzw9eJzc_Xl0-XF-VVjBYjSCM6EADn23Yit6kyvhLZaYMtbjT03PeDo-pab1jjHJEqnTacUt0YqXPUpeb2fu03xx4K5DLPPFusZAetXAxe9kqquWemre_QmLinU61bFAVTHoao3e2VTzDnhOGyTn3XaDcCGNf4BhkP81b48TFzMjO5O_s27grd7UJMpf4K5M7cx_Zs0bN34P_xw9W-Yv5xE</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Wang, Mengjiao</creator><creator>Li, Jianhui</creator><creator>Yu, Samson Shenglong</creator><creator>Zhang, Xinan</creator><creator>Li, Zhijun</creator><creator>Iu, Herbert H. C.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2983-7344</orcidid><orcidid>https://orcid.org/0000-0002-9472-8785</orcidid><orcidid>https://orcid.org/0000-0003-0311-4532</orcidid><orcidid>https://orcid.org/0000000294728785</orcidid><orcidid>https://orcid.org/0000000229837344</orcidid><orcidid>https://orcid.org/0000000303114532</orcidid></search><sort><creationdate>202004</creationdate><title>A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations</title><author>Wang, Mengjiao ; Li, Jianhui ; Yu, Samson Shenglong ; Zhang, Xinan ; Li, Zhijun ; Iu, Herbert H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-3203316f98fe478b973aca3e424ae92b91efd942b4bdd06e6dab8772cb67eb973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bifurcations</topic><topic>Bursting</topic><topic>Chaos theory</topic><topic>Excitation</topic><topic>Experimentation</topic><topic>Liapunov exponents</topic><topic>Oscillations</topic><topic>Phase diagrams</topic><topic>System dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mengjiao</creatorcontrib><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Yu, Samson Shenglong</creatorcontrib><creatorcontrib>Zhang, Xinan</creatorcontrib><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Iu, Herbert H. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mengjiao</au><au>Li, Jianhui</au><au>Yu, Samson Shenglong</au><au>Zhang, Xinan</au><au>Li, Zhijun</au><au>Iu, Herbert H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2020-04</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>043125</spage><epage>043125</epage><pages>043125-043125</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>In this paper, a novel non-autonomous chaotic system with rich dynamical behaviors is proposed by introducing parametric excitation to a Lorenz-like system, and the effect of the initial value of the excitation system on the resulting system dynamics is then thoroughly investigated. The attractors resulting from the proposed chaotic system will enter different oscillating states or have topological change when the initial value varies. Furthermore, some novel bursting oscillations and bifurcation mechanism are revealed. Stability and bifurcation of the proposed 3D non-autonomous system are comprehensively investigated to analyze the causes of the observed dynamics through a range of analytical methods, including bifurcation diagram, Lyapunov exponent spectrum, and sequence and phase diagrams. Software simulation and hardware experimentation are conducted in this study, which verify the dynamic behaviors of the proposed chaotic system. This study will create a new perspective and dimension of perceiving non-autonomous chaotic systems and exploring their applicability in real-world engineering applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32357663</pmid><doi>10.1063/1.5131186</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2983-7344</orcidid><orcidid>https://orcid.org/0000-0002-9472-8785</orcidid><orcidid>https://orcid.org/0000-0003-0311-4532</orcidid><orcidid>https://orcid.org/0000000294728785</orcidid><orcidid>https://orcid.org/0000000229837344</orcidid><orcidid>https://orcid.org/0000000303114532</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2020-04, Vol.30 (4), p.043125-043125 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5131186 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Bifurcations Bursting Chaos theory Excitation Experimentation Liapunov exponents Oscillations Phase diagrams System dynamics |
title | A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting oscillations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%203D%20non-autonomous%20system%20with%20parametrically%20excited%20abundant%20dynamics%20and%20bursting%20oscillations&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wang,%20Mengjiao&rft.date=2020-04&rft.volume=30&rft.issue=4&rft.spage=043125&rft.epage=043125&rft.pages=043125-043125&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5131186&rft_dat=%3Cproquest_cross%3E2397673207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392117821&rft_id=info:pmid/32357663&rfr_iscdi=true |