Low charge state lithium beam production from chemical compounds with laser ion source

In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2020-01, Vol.91 (1), p.013312-013312
Hauptverfasser: Ikeda, Shunsuke, Whelan, Tommy, Tamis, Andrew, Chalfin, Harry, Cannavò, Antonino, Kanesue, Takeshi, Okamura, Masahiro, Takahashi, Kazumasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 013312
container_issue 1
container_start_page 013312
container_title Review of scientific instruments
container_volume 91
creator Ikeda, Shunsuke
Whelan, Tommy
Tamis, Andrew
Chalfin, Harry
Cannavò, Antonino
Kanesue, Takeshi
Okamura, Masahiro
Takahashi, Kazumasa
description In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target material of the laser irradiation. Although an intense lithium beam was demonstrated, some operational difficulties were observed due to its reactiveness to oxygen. For accelerator applications, a more robust and reliable target material has been demanded. For this purpose, we tested lithium niobate, LiNbO3. Our study investigated the optimization of power density to produce low charge state lithium ions. We struck LiNbO3 with the laser and found lithium ion quantities for five different power densities. Based on the data obtained, we can conclude that the most efficient production of Li1+ occurs when the laser power density is 5 × 108 W/cm2.
doi_str_mv 10.1063/1.5128431
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5128431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336681560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-226a5f8ffee9738a1318ee508c56857f41a3d0677dd2db8d7f68a00c70cc577f3</originalsourceid><addsrcrecordid>eNp90U1rFDEYB_Agit22HvwCEuylFqbmZfIyx1JaLSx40V5DNnniTpmZrEnG4rdvhl0rKJhLLj_-yf95EHpLySUlkn-kl4Iy3XL6Aq0o0V2jJOMv0YoQ3jZStfoIHef8QOoRlL5GR5wRymSrVuh-HR-x29r0HXAutgAe-rLt5xFvwI54l6KfXenjhEOKY5Uw9s4O2MVxF-fJZ_xYPR5shoQXluOcHJyiV8EOGd4c7hP07fbm6_XnZv3l09311bpxLRGlYUxaEXQIAJ3i2lJONYAg2gmphQottdwTqZT3zG-0V0FqS4hTxDmhVOAn6P0-N-bSm-z6Am7r4jSBK4YKzdqOVHS-R7XNjxlyMWOfHQyDnSDO2TAuSEc6IUWlZ3_Rh9pnqhWq4lJqKuQS-GGvXIo5Jwhml_rRpl-GErNsxFBz2Ei17w6J82YE_yx_r6CCiz1Yfm-XUT-bnzH9STI7H_6H_336CZHXoFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336681560</pqid></control><display><type>article</type><title>Low charge state lithium beam production from chemical compounds with laser ion source</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ikeda, Shunsuke ; Whelan, Tommy ; Tamis, Andrew ; Chalfin, Harry ; Cannavò, Antonino ; Kanesue, Takeshi ; Okamura, Masahiro ; Takahashi, Kazumasa</creator><creatorcontrib>Ikeda, Shunsuke ; Whelan, Tommy ; Tamis, Andrew ; Chalfin, Harry ; Cannavò, Antonino ; Kanesue, Takeshi ; Okamura, Masahiro ; Takahashi, Kazumasa</creatorcontrib><description>In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target material of the laser irradiation. Although an intense lithium beam was demonstrated, some operational difficulties were observed due to its reactiveness to oxygen. For accelerator applications, a more robust and reliable target material has been demanded. For this purpose, we tested lithium niobate, LiNbO3. Our study investigated the optimization of power density to produce low charge state lithium ions. We struck LiNbO3 with the laser and found lithium ion quantities for five different power densities. Based on the data obtained, we can conclude that the most efficient production of Li1+ occurs when the laser power density is 5 × 108 W/cm2.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5128431</identifier><identifier>PMID: 32012647</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charge density ; Chemical compounds ; Flux density ; Ion sources ; Ions ; Laser beams ; Lasers ; Lithium ; Lithium ions ; Lithium niobates ; Optimization ; Organic chemistry ; Scientific apparatus &amp; instruments</subject><ispartof>Review of scientific instruments, 2020-01, Vol.91 (1), p.013312-013312</ispartof><rights>U.S. Government</rights><rights>2020U.S. Government</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-226a5f8ffee9738a1318ee508c56857f41a3d0677dd2db8d7f68a00c70cc577f3</cites><orcidid>0000-0001-7872-0225 ; 0000-0003-1904-6597 ; 0000-0003-0975-9630 ; 0000-0002-3142-2578 ; 0000-0003-3980-0577 ; 0000-0002-5552-1706 ; 0000-0002-8539-0460 ; 0000000319046597 ; 0000000309759630 ; 0000000339800577 ; 0000000285390460 ; 0000000231422578 ; 0000000255521706 ; 0000000178720225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5128431$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32012647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1582490$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikeda, Shunsuke</creatorcontrib><creatorcontrib>Whelan, Tommy</creatorcontrib><creatorcontrib>Tamis, Andrew</creatorcontrib><creatorcontrib>Chalfin, Harry</creatorcontrib><creatorcontrib>Cannavò, Antonino</creatorcontrib><creatorcontrib>Kanesue, Takeshi</creatorcontrib><creatorcontrib>Okamura, Masahiro</creatorcontrib><creatorcontrib>Takahashi, Kazumasa</creatorcontrib><title>Low charge state lithium beam production from chemical compounds with laser ion source</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target material of the laser irradiation. Although an intense lithium beam was demonstrated, some operational difficulties were observed due to its reactiveness to oxygen. For accelerator applications, a more robust and reliable target material has been demanded. For this purpose, we tested lithium niobate, LiNbO3. Our study investigated the optimization of power density to produce low charge state lithium ions. We struck LiNbO3 with the laser and found lithium ion quantities for five different power densities. Based on the data obtained, we can conclude that the most efficient production of Li1+ occurs when the laser power density is 5 × 108 W/cm2.</description><subject>Charge density</subject><subject>Chemical compounds</subject><subject>Flux density</subject><subject>Ion sources</subject><subject>Ions</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Lithium niobates</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Scientific apparatus &amp; instruments</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFDEYB_Agit22HvwCEuylFqbmZfIyx1JaLSx40V5DNnniTpmZrEnG4rdvhl0rKJhLLj_-yf95EHpLySUlkn-kl4Iy3XL6Aq0o0V2jJOMv0YoQ3jZStfoIHef8QOoRlL5GR5wRymSrVuh-HR-x29r0HXAutgAe-rLt5xFvwI54l6KfXenjhEOKY5Uw9s4O2MVxF-fJZ_xYPR5shoQXluOcHJyiV8EOGd4c7hP07fbm6_XnZv3l09311bpxLRGlYUxaEXQIAJ3i2lJONYAg2gmphQottdwTqZT3zG-0V0FqS4hTxDmhVOAn6P0-N-bSm-z6Am7r4jSBK4YKzdqOVHS-R7XNjxlyMWOfHQyDnSDO2TAuSEc6IUWlZ3_Rh9pnqhWq4lJqKuQS-GGvXIo5Jwhml_rRpl-GErNsxFBz2Ei17w6J82YE_yx_r6CCiz1Yfm-XUT-bnzH9STI7H_6H_336CZHXoFI</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ikeda, Shunsuke</creator><creator>Whelan, Tommy</creator><creator>Tamis, Andrew</creator><creator>Chalfin, Harry</creator><creator>Cannavò, Antonino</creator><creator>Kanesue, Takeshi</creator><creator>Okamura, Masahiro</creator><creator>Takahashi, Kazumasa</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7872-0225</orcidid><orcidid>https://orcid.org/0000-0003-1904-6597</orcidid><orcidid>https://orcid.org/0000-0003-0975-9630</orcidid><orcidid>https://orcid.org/0000-0002-3142-2578</orcidid><orcidid>https://orcid.org/0000-0003-3980-0577</orcidid><orcidid>https://orcid.org/0000-0002-5552-1706</orcidid><orcidid>https://orcid.org/0000-0002-8539-0460</orcidid><orcidid>https://orcid.org/0000000319046597</orcidid><orcidid>https://orcid.org/0000000309759630</orcidid><orcidid>https://orcid.org/0000000339800577</orcidid><orcidid>https://orcid.org/0000000285390460</orcidid><orcidid>https://orcid.org/0000000231422578</orcidid><orcidid>https://orcid.org/0000000255521706</orcidid><orcidid>https://orcid.org/0000000178720225</orcidid></search><sort><creationdate>20200101</creationdate><title>Low charge state lithium beam production from chemical compounds with laser ion source</title><author>Ikeda, Shunsuke ; Whelan, Tommy ; Tamis, Andrew ; Chalfin, Harry ; Cannavò, Antonino ; Kanesue, Takeshi ; Okamura, Masahiro ; Takahashi, Kazumasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-226a5f8ffee9738a1318ee508c56857f41a3d0677dd2db8d7f68a00c70cc577f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge density</topic><topic>Chemical compounds</topic><topic>Flux density</topic><topic>Ion sources</topic><topic>Ions</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Lithium niobates</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Scientific apparatus &amp; instruments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Shunsuke</creatorcontrib><creatorcontrib>Whelan, Tommy</creatorcontrib><creatorcontrib>Tamis, Andrew</creatorcontrib><creatorcontrib>Chalfin, Harry</creatorcontrib><creatorcontrib>Cannavò, Antonino</creatorcontrib><creatorcontrib>Kanesue, Takeshi</creatorcontrib><creatorcontrib>Okamura, Masahiro</creatorcontrib><creatorcontrib>Takahashi, Kazumasa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Shunsuke</au><au>Whelan, Tommy</au><au>Tamis, Andrew</au><au>Chalfin, Harry</au><au>Cannavò, Antonino</au><au>Kanesue, Takeshi</au><au>Okamura, Masahiro</au><au>Takahashi, Kazumasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low charge state lithium beam production from chemical compounds with laser ion source</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>91</volume><issue>1</issue><spage>013312</spage><epage>013312</epage><pages>013312-013312</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target material of the laser irradiation. Although an intense lithium beam was demonstrated, some operational difficulties were observed due to its reactiveness to oxygen. For accelerator applications, a more robust and reliable target material has been demanded. For this purpose, we tested lithium niobate, LiNbO3. Our study investigated the optimization of power density to produce low charge state lithium ions. We struck LiNbO3 with the laser and found lithium ion quantities for five different power densities. Based on the data obtained, we can conclude that the most efficient production of Li1+ occurs when the laser power density is 5 × 108 W/cm2.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32012647</pmid><doi>10.1063/1.5128431</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7872-0225</orcidid><orcidid>https://orcid.org/0000-0003-1904-6597</orcidid><orcidid>https://orcid.org/0000-0003-0975-9630</orcidid><orcidid>https://orcid.org/0000-0002-3142-2578</orcidid><orcidid>https://orcid.org/0000-0003-3980-0577</orcidid><orcidid>https://orcid.org/0000-0002-5552-1706</orcidid><orcidid>https://orcid.org/0000-0002-8539-0460</orcidid><orcidid>https://orcid.org/0000000319046597</orcidid><orcidid>https://orcid.org/0000000309759630</orcidid><orcidid>https://orcid.org/0000000339800577</orcidid><orcidid>https://orcid.org/0000000285390460</orcidid><orcidid>https://orcid.org/0000000231422578</orcidid><orcidid>https://orcid.org/0000000255521706</orcidid><orcidid>https://orcid.org/0000000178720225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2020-01, Vol.91 (1), p.013312-013312
issn 0034-6748
1089-7623
language eng
recordid cdi_crossref_primary_10_1063_1_5128431
source AIP Journals Complete; Alma/SFX Local Collection
subjects Charge density
Chemical compounds
Flux density
Ion sources
Ions
Laser beams
Lasers
Lithium
Lithium ions
Lithium niobates
Optimization
Organic chemistry
Scientific apparatus & instruments
title Low charge state lithium beam production from chemical compounds with laser ion source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20charge%20state%20lithium%20beam%20production%20from%20chemical%20compounds%20with%20laser%20ion%20source&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Ikeda,%20Shunsuke&rft.date=2020-01-01&rft.volume=91&rft.issue=1&rft.spage=013312&rft.epage=013312&rft.pages=013312-013312&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5128431&rft_dat=%3Cproquest_cross%3E2336681560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336681560&rft_id=info:pmid/32012647&rfr_iscdi=true