Low charge state lithium beam production from chemical compounds with laser ion source
In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2020-01, Vol.91 (1), p.013312-013312 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 013312 |
---|---|
container_issue | 1 |
container_start_page | 013312 |
container_title | Review of scientific instruments |
container_volume | 91 |
creator | Ikeda, Shunsuke Whelan, Tommy Tamis, Andrew Chalfin, Harry Cannavò, Antonino Kanesue, Takeshi Okamura, Masahiro Takahashi, Kazumasa |
description | In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target material of the laser irradiation. Although an intense lithium beam was demonstrated, some operational difficulties were observed due to its reactiveness to oxygen. For accelerator applications, a more robust and reliable target material has been demanded. For this purpose, we tested lithium niobate, LiNbO3. Our study investigated the optimization of power density to produce low charge state lithium ions. We struck LiNbO3 with the laser and found lithium ion quantities for five different power densities. Based on the data obtained, we can conclude that the most efficient production of Li1+ occurs when the laser power density is 5 × 108 W/cm2. |
doi_str_mv | 10.1063/1.5128431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5128431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2336681560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-226a5f8ffee9738a1318ee508c56857f41a3d0677dd2db8d7f68a00c70cc577f3</originalsourceid><addsrcrecordid>eNp90U1rFDEYB_Agit22HvwCEuylFqbmZfIyx1JaLSx40V5DNnniTpmZrEnG4rdvhl0rKJhLLj_-yf95EHpLySUlkn-kl4Iy3XL6Aq0o0V2jJOMv0YoQ3jZStfoIHef8QOoRlL5GR5wRymSrVuh-HR-x29r0HXAutgAe-rLt5xFvwI54l6KfXenjhEOKY5Uw9s4O2MVxF-fJZ_xYPR5shoQXluOcHJyiV8EOGd4c7hP07fbm6_XnZv3l09311bpxLRGlYUxaEXQIAJ3i2lJONYAg2gmphQottdwTqZT3zG-0V0FqS4hTxDmhVOAn6P0-N-bSm-z6Am7r4jSBK4YKzdqOVHS-R7XNjxlyMWOfHQyDnSDO2TAuSEc6IUWlZ3_Rh9pnqhWq4lJqKuQS-GGvXIo5Jwhml_rRpl-GErNsxFBz2Ei17w6J82YE_yx_r6CCiz1Yfm-XUT-bnzH9STI7H_6H_336CZHXoFI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2336681560</pqid></control><display><type>article</type><title>Low charge state lithium beam production from chemical compounds with laser ion source</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ikeda, Shunsuke ; Whelan, Tommy ; Tamis, Andrew ; Chalfin, Harry ; Cannavò, Antonino ; Kanesue, Takeshi ; Okamura, Masahiro ; Takahashi, Kazumasa</creator><creatorcontrib>Ikeda, Shunsuke ; Whelan, Tommy ; Tamis, Andrew ; Chalfin, Harry ; Cannavò, Antonino ; Kanesue, Takeshi ; Okamura, Masahiro ; Takahashi, Kazumasa</creatorcontrib><description>In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target material of the laser irradiation. Although an intense lithium beam was demonstrated, some operational difficulties were observed due to its reactiveness to oxygen. For accelerator applications, a more robust and reliable target material has been demanded. For this purpose, we tested lithium niobate, LiNbO3. Our study investigated the optimization of power density to produce low charge state lithium ions. We struck LiNbO3 with the laser and found lithium ion quantities for five different power densities. Based on the data obtained, we can conclude that the most efficient production of Li1+ occurs when the laser power density is 5 × 108 W/cm2.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5128431</identifier><identifier>PMID: 32012647</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Charge density ; Chemical compounds ; Flux density ; Ion sources ; Ions ; Laser beams ; Lasers ; Lithium ; Lithium ions ; Lithium niobates ; Optimization ; Organic chemistry ; Scientific apparatus & instruments</subject><ispartof>Review of scientific instruments, 2020-01, Vol.91 (1), p.013312-013312</ispartof><rights>U.S. Government</rights><rights>2020U.S. Government</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-226a5f8ffee9738a1318ee508c56857f41a3d0677dd2db8d7f68a00c70cc577f3</cites><orcidid>0000-0001-7872-0225 ; 0000-0003-1904-6597 ; 0000-0003-0975-9630 ; 0000-0002-3142-2578 ; 0000-0003-3980-0577 ; 0000-0002-5552-1706 ; 0000-0002-8539-0460 ; 0000000319046597 ; 0000000309759630 ; 0000000339800577 ; 0000000285390460 ; 0000000231422578 ; 0000000255521706 ; 0000000178720225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5128431$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32012647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1582490$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikeda, Shunsuke</creatorcontrib><creatorcontrib>Whelan, Tommy</creatorcontrib><creatorcontrib>Tamis, Andrew</creatorcontrib><creatorcontrib>Chalfin, Harry</creatorcontrib><creatorcontrib>Cannavò, Antonino</creatorcontrib><creatorcontrib>Kanesue, Takeshi</creatorcontrib><creatorcontrib>Okamura, Masahiro</creatorcontrib><creatorcontrib>Takahashi, Kazumasa</creatorcontrib><title>Low charge state lithium beam production from chemical compounds with laser ion source</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target material of the laser irradiation. Although an intense lithium beam was demonstrated, some operational difficulties were observed due to its reactiveness to oxygen. For accelerator applications, a more robust and reliable target material has been demanded. For this purpose, we tested lithium niobate, LiNbO3. Our study investigated the optimization of power density to produce low charge state lithium ions. We struck LiNbO3 with the laser and found lithium ion quantities for five different power densities. Based on the data obtained, we can conclude that the most efficient production of Li1+ occurs when the laser power density is 5 × 108 W/cm2.</description><subject>Charge density</subject><subject>Chemical compounds</subject><subject>Flux density</subject><subject>Ion sources</subject><subject>Ions</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Lithium niobates</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Scientific apparatus & instruments</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFDEYB_Agit22HvwCEuylFqbmZfIyx1JaLSx40V5DNnniTpmZrEnG4rdvhl0rKJhLLj_-yf95EHpLySUlkn-kl4Iy3XL6Aq0o0V2jJOMv0YoQ3jZStfoIHef8QOoRlL5GR5wRymSrVuh-HR-x29r0HXAutgAe-rLt5xFvwI54l6KfXenjhEOKY5Uw9s4O2MVxF-fJZ_xYPR5shoQXluOcHJyiV8EOGd4c7hP07fbm6_XnZv3l09311bpxLRGlYUxaEXQIAJ3i2lJONYAg2gmphQottdwTqZT3zG-0V0FqS4hTxDmhVOAn6P0-N-bSm-z6Am7r4jSBK4YKzdqOVHS-R7XNjxlyMWOfHQyDnSDO2TAuSEc6IUWlZ3_Rh9pnqhWq4lJqKuQS-GGvXIo5Jwhml_rRpl-GErNsxFBz2Ei17w6J82YE_yx_r6CCiz1Yfm-XUT-bnzH9STI7H_6H_336CZHXoFI</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ikeda, Shunsuke</creator><creator>Whelan, Tommy</creator><creator>Tamis, Andrew</creator><creator>Chalfin, Harry</creator><creator>Cannavò, Antonino</creator><creator>Kanesue, Takeshi</creator><creator>Okamura, Masahiro</creator><creator>Takahashi, Kazumasa</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7872-0225</orcidid><orcidid>https://orcid.org/0000-0003-1904-6597</orcidid><orcidid>https://orcid.org/0000-0003-0975-9630</orcidid><orcidid>https://orcid.org/0000-0002-3142-2578</orcidid><orcidid>https://orcid.org/0000-0003-3980-0577</orcidid><orcidid>https://orcid.org/0000-0002-5552-1706</orcidid><orcidid>https://orcid.org/0000-0002-8539-0460</orcidid><orcidid>https://orcid.org/0000000319046597</orcidid><orcidid>https://orcid.org/0000000309759630</orcidid><orcidid>https://orcid.org/0000000339800577</orcidid><orcidid>https://orcid.org/0000000285390460</orcidid><orcidid>https://orcid.org/0000000231422578</orcidid><orcidid>https://orcid.org/0000000255521706</orcidid><orcidid>https://orcid.org/0000000178720225</orcidid></search><sort><creationdate>20200101</creationdate><title>Low charge state lithium beam production from chemical compounds with laser ion source</title><author>Ikeda, Shunsuke ; Whelan, Tommy ; Tamis, Andrew ; Chalfin, Harry ; Cannavò, Antonino ; Kanesue, Takeshi ; Okamura, Masahiro ; Takahashi, Kazumasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-226a5f8ffee9738a1318ee508c56857f41a3d0677dd2db8d7f68a00c70cc577f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge density</topic><topic>Chemical compounds</topic><topic>Flux density</topic><topic>Ion sources</topic><topic>Ions</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Lithium niobates</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Scientific apparatus & instruments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Shunsuke</creatorcontrib><creatorcontrib>Whelan, Tommy</creatorcontrib><creatorcontrib>Tamis, Andrew</creatorcontrib><creatorcontrib>Chalfin, Harry</creatorcontrib><creatorcontrib>Cannavò, Antonino</creatorcontrib><creatorcontrib>Kanesue, Takeshi</creatorcontrib><creatorcontrib>Okamura, Masahiro</creatorcontrib><creatorcontrib>Takahashi, Kazumasa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Shunsuke</au><au>Whelan, Tommy</au><au>Tamis, Andrew</au><au>Chalfin, Harry</au><au>Cannavò, Antonino</au><au>Kanesue, Takeshi</au><au>Okamura, Masahiro</au><au>Takahashi, Kazumasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low charge state lithium beam production from chemical compounds with laser ion source</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>91</volume><issue>1</issue><spage>013312</spage><epage>013312</epage><pages>013312-013312</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>In recent years, the primary ion source for the Brookhaven National Laboratory has been the laser ion source, which provides many types of ions within a short switching time of several seconds. The task is difficult for other ion sources. In the previous work, we tested metallic lithium as a target material of the laser irradiation. Although an intense lithium beam was demonstrated, some operational difficulties were observed due to its reactiveness to oxygen. For accelerator applications, a more robust and reliable target material has been demanded. For this purpose, we tested lithium niobate, LiNbO3. Our study investigated the optimization of power density to produce low charge state lithium ions. We struck LiNbO3 with the laser and found lithium ion quantities for five different power densities. Based on the data obtained, we can conclude that the most efficient production of Li1+ occurs when the laser power density is 5 × 108 W/cm2.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32012647</pmid><doi>10.1063/1.5128431</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7872-0225</orcidid><orcidid>https://orcid.org/0000-0003-1904-6597</orcidid><orcidid>https://orcid.org/0000-0003-0975-9630</orcidid><orcidid>https://orcid.org/0000-0002-3142-2578</orcidid><orcidid>https://orcid.org/0000-0003-3980-0577</orcidid><orcidid>https://orcid.org/0000-0002-5552-1706</orcidid><orcidid>https://orcid.org/0000-0002-8539-0460</orcidid><orcidid>https://orcid.org/0000000319046597</orcidid><orcidid>https://orcid.org/0000000309759630</orcidid><orcidid>https://orcid.org/0000000339800577</orcidid><orcidid>https://orcid.org/0000000285390460</orcidid><orcidid>https://orcid.org/0000000231422578</orcidid><orcidid>https://orcid.org/0000000255521706</orcidid><orcidid>https://orcid.org/0000000178720225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2020-01, Vol.91 (1), p.013312-013312 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5128431 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Charge density Chemical compounds Flux density Ion sources Ions Laser beams Lasers Lithium Lithium ions Lithium niobates Optimization Organic chemistry Scientific apparatus & instruments |
title | Low charge state lithium beam production from chemical compounds with laser ion source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20charge%20state%20lithium%20beam%20production%20from%20chemical%20compounds%20with%20laser%20ion%20source&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Ikeda,%20Shunsuke&rft.date=2020-01-01&rft.volume=91&rft.issue=1&rft.spage=013312&rft.epage=013312&rft.pages=013312-013312&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5128431&rft_dat=%3Cproquest_cross%3E2336681560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2336681560&rft_id=info:pmid/32012647&rfr_iscdi=true |