Persistent and reversible electrostatic control of doping in graphene/hexagonal boron nitride heterostructures

Since its first application as a substrate for graphene field effect transistors (FETs), hexagonal boron nitride (hBN) has become a prominent component in two-dimensional (2D) material devices. In addition, hBN has been shown to host defects that can be manipulated to change the electronic propertie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-01, Vol.127 (4)
Hauptverfasser: Quezada-Lopez, E. A., Joucken, F., Chen, H., Lara, A., Davenport, J. L., Hellier, K., Taniguchi, T., Watanabe, K., Carter, S., Ramirez, A. P., Velasco, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of applied physics
container_volume 127
creator Quezada-Lopez, E. A.
Joucken, F.
Chen, H.
Lara, A.
Davenport, J. L.
Hellier, K.
Taniguchi, T.
Watanabe, K.
Carter, S.
Ramirez, A. P.
Velasco, J.
description Since its first application as a substrate for graphene field effect transistors (FETs), hexagonal boron nitride (hBN) has become a prominent component in two-dimensional (2D) material devices. In addition, hBN has been shown to host defects that can be manipulated to change the electronic properties of adjacent 2D materials. Despite the wide use of such defect manipulations, no focused efforts have been made to further the understanding of defect excitations and their influence in graphene/hBN FETs. In this study, we explore the effect of high electric fields ( ∼ 10 V / nm ) on graphene/hBN FETs and find that persistent and reversible shifts in graphene's charge neutrality point (CNP) occur. By increasing the applied electric field and temperature of our device, we find that this CNP shift is enhanced. With this insight, we propose a mechanism that explains these observations based on Poole–Frenkel emissions from defects in hBN. Finally, we show that such an effect may be suppressed by using graphite as a backgate, thus preventing unintended changes in the electrical properties of graphene/hBN FETs.
doi_str_mv 10.1063/1.5127770
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5127770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343336101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-652a8cd17b220cf15ca6d9999e1e1568e1d762e4cf9e8a02e074b5cc44f7c72e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK4e_AZBTwrVTNI27VHEfyDoQc8hm053s9SkJtlFv71ZVvQgOJdhhh_v8R4hx8AugNXiEi4q4FJKtkMmwJq2kFXFdsmEMQ5F08p2nxzEuGQMoBHthLhnDNHGhC5R7ToacL15zAakOKBJwcekkzXUeJePgfqedn60bk6to_OgxwU6vFzgh557pwc688E76mwKtkO6wIQbibAyaRUwHpK9Xg8Rj773lLze3rxc3xePT3cP11ePhRFNm4q64roxHcgZ58z0UBldd20eBISqbhA6WXMsTd9ioxlHJstZZUxZ9tJIjmJKTra62duqaGxCs8gRXI6koGEC6jZDp1toDP59hTGppV-FHCIqLkohRA0MMnW2pUwOEgP2agz2TYdPBUxtOlegvjvP7PmW3Tjm2rz7gdc-_IJq7Pr_4L_KX9XQkcM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343336101</pqid></control><display><type>article</type><title>Persistent and reversible electrostatic control of doping in graphene/hexagonal boron nitride heterostructures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Quezada-Lopez, E. A. ; Joucken, F. ; Chen, H. ; Lara, A. ; Davenport, J. L. ; Hellier, K. ; Taniguchi, T. ; Watanabe, K. ; Carter, S. ; Ramirez, A. P. ; Velasco, J.</creator><creatorcontrib>Quezada-Lopez, E. A. ; Joucken, F. ; Chen, H. ; Lara, A. ; Davenport, J. L. ; Hellier, K. ; Taniguchi, T. ; Watanabe, K. ; Carter, S. ; Ramirez, A. P. ; Velasco, J. ; Univ. of California, Santa Cruz, CA (United States)</creatorcontrib><description>Since its first application as a substrate for graphene field effect transistors (FETs), hexagonal boron nitride (hBN) has become a prominent component in two-dimensional (2D) material devices. In addition, hBN has been shown to host defects that can be manipulated to change the electronic properties of adjacent 2D materials. Despite the wide use of such defect manipulations, no focused efforts have been made to further the understanding of defect excitations and their influence in graphene/hBN FETs. In this study, we explore the effect of high electric fields ( ∼ 10 V / nm ) on graphene/hBN FETs and find that persistent and reversible shifts in graphene's charge neutrality point (CNP) occur. By increasing the applied electric field and temperature of our device, we find that this CNP shift is enhanced. With this insight, we propose a mechanism that explains these observations based on Poole–Frenkel emissions from defects in hBN. Finally, we show that such an effect may be suppressed by using graphite as a backgate, thus preventing unintended changes in the electrical properties of graphene/hBN FETs.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5127770</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boron nitride ; Defects ; Electric fields ; Electrical properties ; Field effect transistors ; Graphene ; Heterostructures ; MATERIALS SCIENCE ; Semiconductor devices ; Substrates ; Two dimensional materials</subject><ispartof>Journal of applied physics, 2020-01, Vol.127 (4)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-652a8cd17b220cf15ca6d9999e1e1568e1d762e4cf9e8a02e074b5cc44f7c72e3</citedby><cites>FETCH-LOGICAL-c389t-652a8cd17b220cf15ca6d9999e1e1568e1d762e4cf9e8a02e074b5cc44f7c72e3</cites><orcidid>0000-0002-9056-0081 ; 0000-0002-3493-1095 ; 0000-0003-3701-8119 ; 0000-0002-8676-6431 ; 0000000286766431 ; 0000000234931095 ; 0000000290560081 ; 0000000337018119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5127770$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1803169$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Quezada-Lopez, E. A.</creatorcontrib><creatorcontrib>Joucken, F.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Lara, A.</creatorcontrib><creatorcontrib>Davenport, J. L.</creatorcontrib><creatorcontrib>Hellier, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Carter, S.</creatorcontrib><creatorcontrib>Ramirez, A. P.</creatorcontrib><creatorcontrib>Velasco, J.</creatorcontrib><creatorcontrib>Univ. of California, Santa Cruz, CA (United States)</creatorcontrib><title>Persistent and reversible electrostatic control of doping in graphene/hexagonal boron nitride heterostructures</title><title>Journal of applied physics</title><description>Since its first application as a substrate for graphene field effect transistors (FETs), hexagonal boron nitride (hBN) has become a prominent component in two-dimensional (2D) material devices. In addition, hBN has been shown to host defects that can be manipulated to change the electronic properties of adjacent 2D materials. Despite the wide use of such defect manipulations, no focused efforts have been made to further the understanding of defect excitations and their influence in graphene/hBN FETs. In this study, we explore the effect of high electric fields ( ∼ 10 V / nm ) on graphene/hBN FETs and find that persistent and reversible shifts in graphene's charge neutrality point (CNP) occur. By increasing the applied electric field and temperature of our device, we find that this CNP shift is enhanced. With this insight, we propose a mechanism that explains these observations based on Poole–Frenkel emissions from defects in hBN. Finally, we show that such an effect may be suppressed by using graphite as a backgate, thus preventing unintended changes in the electrical properties of graphene/hBN FETs.</description><subject>Applied physics</subject><subject>Boron nitride</subject><subject>Defects</subject><subject>Electric fields</subject><subject>Electrical properties</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>MATERIALS SCIENCE</subject><subject>Semiconductor devices</subject><subject>Substrates</subject><subject>Two dimensional materials</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK4e_AZBTwrVTNI27VHEfyDoQc8hm053s9SkJtlFv71ZVvQgOJdhhh_v8R4hx8AugNXiEi4q4FJKtkMmwJq2kFXFdsmEMQ5F08p2nxzEuGQMoBHthLhnDNHGhC5R7ToacL15zAakOKBJwcekkzXUeJePgfqedn60bk6to_OgxwU6vFzgh557pwc688E76mwKtkO6wIQbibAyaRUwHpK9Xg8Rj773lLze3rxc3xePT3cP11ePhRFNm4q64roxHcgZ58z0UBldd20eBISqbhA6WXMsTd9ioxlHJstZZUxZ9tJIjmJKTra62duqaGxCs8gRXI6koGEC6jZDp1toDP59hTGppV-FHCIqLkohRA0MMnW2pUwOEgP2agz2TYdPBUxtOlegvjvP7PmW3Tjm2rz7gdc-_IJq7Pr_4L_KX9XQkcM</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Quezada-Lopez, E. A.</creator><creator>Joucken, F.</creator><creator>Chen, H.</creator><creator>Lara, A.</creator><creator>Davenport, J. L.</creator><creator>Hellier, K.</creator><creator>Taniguchi, T.</creator><creator>Watanabe, K.</creator><creator>Carter, S.</creator><creator>Ramirez, A. P.</creator><creator>Velasco, J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9056-0081</orcidid><orcidid>https://orcid.org/0000-0002-3493-1095</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-8676-6431</orcidid><orcidid>https://orcid.org/0000000286766431</orcidid><orcidid>https://orcid.org/0000000234931095</orcidid><orcidid>https://orcid.org/0000000290560081</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid></search><sort><creationdate>20200131</creationdate><title>Persistent and reversible electrostatic control of doping in graphene/hexagonal boron nitride heterostructures</title><author>Quezada-Lopez, E. A. ; Joucken, F. ; Chen, H. ; Lara, A. ; Davenport, J. L. ; Hellier, K. ; Taniguchi, T. ; Watanabe, K. ; Carter, S. ; Ramirez, A. P. ; Velasco, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-652a8cd17b220cf15ca6d9999e1e1568e1d762e4cf9e8a02e074b5cc44f7c72e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Boron nitride</topic><topic>Defects</topic><topic>Electric fields</topic><topic>Electrical properties</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>MATERIALS SCIENCE</topic><topic>Semiconductor devices</topic><topic>Substrates</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quezada-Lopez, E. A.</creatorcontrib><creatorcontrib>Joucken, F.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Lara, A.</creatorcontrib><creatorcontrib>Davenport, J. L.</creatorcontrib><creatorcontrib>Hellier, K.</creatorcontrib><creatorcontrib>Taniguchi, T.</creatorcontrib><creatorcontrib>Watanabe, K.</creatorcontrib><creatorcontrib>Carter, S.</creatorcontrib><creatorcontrib>Ramirez, A. P.</creatorcontrib><creatorcontrib>Velasco, J.</creatorcontrib><creatorcontrib>Univ. of California, Santa Cruz, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quezada-Lopez, E. A.</au><au>Joucken, F.</au><au>Chen, H.</au><au>Lara, A.</au><au>Davenport, J. L.</au><au>Hellier, K.</au><au>Taniguchi, T.</au><au>Watanabe, K.</au><au>Carter, S.</au><au>Ramirez, A. P.</au><au>Velasco, J.</au><aucorp>Univ. of California, Santa Cruz, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent and reversible electrostatic control of doping in graphene/hexagonal boron nitride heterostructures</atitle><jtitle>Journal of applied physics</jtitle><date>2020-01-31</date><risdate>2020</risdate><volume>127</volume><issue>4</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Since its first application as a substrate for graphene field effect transistors (FETs), hexagonal boron nitride (hBN) has become a prominent component in two-dimensional (2D) material devices. In addition, hBN has been shown to host defects that can be manipulated to change the electronic properties of adjacent 2D materials. Despite the wide use of such defect manipulations, no focused efforts have been made to further the understanding of defect excitations and their influence in graphene/hBN FETs. In this study, we explore the effect of high electric fields ( ∼ 10 V / nm ) on graphene/hBN FETs and find that persistent and reversible shifts in graphene's charge neutrality point (CNP) occur. By increasing the applied electric field and temperature of our device, we find that this CNP shift is enhanced. With this insight, we propose a mechanism that explains these observations based on Poole–Frenkel emissions from defects in hBN. Finally, we show that such an effect may be suppressed by using graphite as a backgate, thus preventing unintended changes in the electrical properties of graphene/hBN FETs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5127770</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9056-0081</orcidid><orcidid>https://orcid.org/0000-0002-3493-1095</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-8676-6431</orcidid><orcidid>https://orcid.org/0000000286766431</orcidid><orcidid>https://orcid.org/0000000234931095</orcidid><orcidid>https://orcid.org/0000000290560081</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-01, Vol.127 (4)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_5127770
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Boron nitride
Defects
Electric fields
Electrical properties
Field effect transistors
Graphene
Heterostructures
MATERIALS SCIENCE
Semiconductor devices
Substrates
Two dimensional materials
title Persistent and reversible electrostatic control of doping in graphene/hexagonal boron nitride heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20and%20reversible%20electrostatic%20control%20of%20doping%20in%20graphene/hexagonal%20boron%20nitride%20heterostructures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Quezada-Lopez,%20E.%20A.&rft.aucorp=Univ.%20of%20California,%20Santa%20Cruz,%20CA%20(United%20States)&rft.date=2020-01-31&rft.volume=127&rft.issue=4&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5127770&rft_dat=%3Cproquest_cross%3E2343336101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343336101&rft_id=info:pmid/&rfr_iscdi=true