Development of atomic force microscopy combined with scanning electron microscopy for investigating electronic devices
Atomic force microscopy (AFM) was combined with scanning electron microscopy (SEM) to investigate electronic devices. In general, under observation using an optical microscope, it is difficult to position the cantilever at an arbitrary scan area of an electronic device with a microstructure. Thus, a...
Gespeichert in:
Veröffentlicht in: | AIP advances 2019-11, Vol.9 (11), p.115011-115011-8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115011-8 |
---|---|
container_issue | 11 |
container_start_page | 115011 |
container_title | AIP advances |
container_volume | 9 |
creator | Uruma, Takeshi Tsunemitsu, Chiaki Terao, Katsuki Nakazawa, Kenta Satoh, Nobuo Yamamoto, Hidekazu Iwata, Futoshi |
description | Atomic force microscopy (AFM) was combined with scanning electron microscopy (SEM) to investigate electronic devices. In general, under observation using an optical microscope, it is difficult to position the cantilever at an arbitrary scan area of an electronic device with a microstructure. Thus, a method for positioning the cantilever is necessary to observe electronic devices. In this study, we developed an AFM/SEM system to evaluate an electronic device. The optical beam deflection (OBD) unit of the system was designed for a distance between the SEM objective lens and a sample surface to be 2 cm. A sample space large enough to place an actual device was created, using a scan unit fabricated with three tube scanners. The scanning ranges of the scan unit are 21.9 µm × 23.1 µm in the XY plane and of 2.5 µm for the Z axis. The noise density in the OBD unit was measured to be 0.29 pm/Hz0.5, which is comparable to noise density values reported for commercial AFM systems. Using the electron beam of SEM, the electron beam induced current (EBIC) is generated from a p–n junction of a semiconductor. Using the EBIC, the cantilever was positioned at the p–n-junction of a Si fast recovery diode (FRD). In addition, scanning capacitance force microscopy (SCFM) and Kelvin probe force microscopy (KFM) were combined with the AFM/SEM system. The SCFM and KFM signals were in qualitative agreement with the expected carrier density distribution of the p and n-regions of the Si-FRD. |
doi_str_mv | 10.1063/1.5125163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5125163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6a1c37ea1e78480f96b0ede4139ab544</doaj_id><sourcerecordid>2314408494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a30d0860ec324f4ec368aee56199941dbdffe2ebb085f85302b097b08642e8813</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRUNSD_yDgSaGar02zR6lfBcGLnkM2O6kpbbIm6Yr_3tQWLQjmMpPhyTuZd6rqjOArggW7Jlc1oTURbK86oqSWI0ap2N_JD6vTlOa4HN4QLPlRNdzCAIvQL8FnFCzSOSydQTZEA6hkMSQT-k9kwrJ1Hjr04fIbSkZ77_wMwQJMjsHvouUtcn6AlN1M512qCHcwOAPppDqwepHgdBuPq9f7u5fJ4-jp-WE6uXkaGU5lHmmGOywFBsMot7wEITVALUjTNJx0bWctUGhbLGsra4Zpi5txuQlOQUrCjqvpRrcLeq766JY6fqqgnfouhDhTOmZnFqCEJoaNQRMYSy6xbUSLoQNOWKPbmvOidb7R6mN4X5Xx1Dysoi_fV5QRzoufzZq62FBrP1IE-9OVYLXekiJqu6XCXm7YZFwuVgX_Aw8h_oKq7-x_8F_lLzEjobU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314408494</pqid></control><display><type>article</type><title>Development of atomic force microscopy combined with scanning electron microscopy for investigating electronic devices</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Uruma, Takeshi ; Tsunemitsu, Chiaki ; Terao, Katsuki ; Nakazawa, Kenta ; Satoh, Nobuo ; Yamamoto, Hidekazu ; Iwata, Futoshi</creator><creatorcontrib>Uruma, Takeshi ; Tsunemitsu, Chiaki ; Terao, Katsuki ; Nakazawa, Kenta ; Satoh, Nobuo ; Yamamoto, Hidekazu ; Iwata, Futoshi</creatorcontrib><description>Atomic force microscopy (AFM) was combined with scanning electron microscopy (SEM) to investigate electronic devices. In general, under observation using an optical microscope, it is difficult to position the cantilever at an arbitrary scan area of an electronic device with a microstructure. Thus, a method for positioning the cantilever is necessary to observe electronic devices. In this study, we developed an AFM/SEM system to evaluate an electronic device. The optical beam deflection (OBD) unit of the system was designed for a distance between the SEM objective lens and a sample surface to be 2 cm. A sample space large enough to place an actual device was created, using a scan unit fabricated with three tube scanners. The scanning ranges of the scan unit are 21.9 µm × 23.1 µm in the XY plane and of 2.5 µm for the Z axis. The noise density in the OBD unit was measured to be 0.29 pm/Hz0.5, which is comparable to noise density values reported for commercial AFM systems. Using the electron beam of SEM, the electron beam induced current (EBIC) is generated from a p–n junction of a semiconductor. Using the EBIC, the cantilever was positioned at the p–n-junction of a Si fast recovery diode (FRD). In addition, scanning capacitance force microscopy (SCFM) and Kelvin probe force microscopy (KFM) were combined with the AFM/SEM system. The SCFM and KFM signals were in qualitative agreement with the expected carrier density distribution of the p and n-regions of the Si-FRD.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5125163</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Atomic force microscopes ; Atomic force microscopy ; Carrier density ; Density distribution ; Electron beam induced current ; Electronic devices ; Microscopes ; Optical beam deflection ; Optical microscopes ; Optical scanners ; P-n junctions ; Qualitative analysis ; Scanning electron microscopy</subject><ispartof>AIP advances, 2019-11, Vol.9 (11), p.115011-115011-8</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a30d0860ec324f4ec368aee56199941dbdffe2ebb085f85302b097b08642e8813</citedby><cites>FETCH-LOGICAL-c428t-a30d0860ec324f4ec368aee56199941dbdffe2ebb085f85302b097b08642e8813</cites><orcidid>0000-0001-7496-2550 ; 0000-0001-6725-9250 ; 0000-0001-7052-7164 ; 0000-0002-2048-7579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27903,27904</link.rule.ids></links><search><creatorcontrib>Uruma, Takeshi</creatorcontrib><creatorcontrib>Tsunemitsu, Chiaki</creatorcontrib><creatorcontrib>Terao, Katsuki</creatorcontrib><creatorcontrib>Nakazawa, Kenta</creatorcontrib><creatorcontrib>Satoh, Nobuo</creatorcontrib><creatorcontrib>Yamamoto, Hidekazu</creatorcontrib><creatorcontrib>Iwata, Futoshi</creatorcontrib><title>Development of atomic force microscopy combined with scanning electron microscopy for investigating electronic devices</title><title>AIP advances</title><description>Atomic force microscopy (AFM) was combined with scanning electron microscopy (SEM) to investigate electronic devices. In general, under observation using an optical microscope, it is difficult to position the cantilever at an arbitrary scan area of an electronic device with a microstructure. Thus, a method for positioning the cantilever is necessary to observe electronic devices. In this study, we developed an AFM/SEM system to evaluate an electronic device. The optical beam deflection (OBD) unit of the system was designed for a distance between the SEM objective lens and a sample surface to be 2 cm. A sample space large enough to place an actual device was created, using a scan unit fabricated with three tube scanners. The scanning ranges of the scan unit are 21.9 µm × 23.1 µm in the XY plane and of 2.5 µm for the Z axis. The noise density in the OBD unit was measured to be 0.29 pm/Hz0.5, which is comparable to noise density values reported for commercial AFM systems. Using the electron beam of SEM, the electron beam induced current (EBIC) is generated from a p–n junction of a semiconductor. Using the EBIC, the cantilever was positioned at the p–n-junction of a Si fast recovery diode (FRD). In addition, scanning capacitance force microscopy (SCFM) and Kelvin probe force microscopy (KFM) were combined with the AFM/SEM system. The SCFM and KFM signals were in qualitative agreement with the expected carrier density distribution of the p and n-regions of the Si-FRD.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Carrier density</subject><subject>Density distribution</subject><subject>Electron beam induced current</subject><subject>Electronic devices</subject><subject>Microscopes</subject><subject>Optical beam deflection</subject><subject>Optical microscopes</subject><subject>Optical scanners</subject><subject>P-n junctions</subject><subject>Qualitative analysis</subject><subject>Scanning electron microscopy</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LAzEQhhdRUNSD_yDgSaGar02zR6lfBcGLnkM2O6kpbbIm6Yr_3tQWLQjmMpPhyTuZd6rqjOArggW7Jlc1oTURbK86oqSWI0ap2N_JD6vTlOa4HN4QLPlRNdzCAIvQL8FnFCzSOSydQTZEA6hkMSQT-k9kwrJ1Hjr04fIbSkZ77_wMwQJMjsHvouUtcn6AlN1M512qCHcwOAPppDqwepHgdBuPq9f7u5fJ4-jp-WE6uXkaGU5lHmmGOywFBsMot7wEITVALUjTNJx0bWctUGhbLGsra4Zpi5txuQlOQUrCjqvpRrcLeq766JY6fqqgnfouhDhTOmZnFqCEJoaNQRMYSy6xbUSLoQNOWKPbmvOidb7R6mN4X5Xx1Dysoi_fV5QRzoufzZq62FBrP1IE-9OVYLXekiJqu6XCXm7YZFwuVgX_Aw8h_oKq7-x_8F_lLzEjobU</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Uruma, Takeshi</creator><creator>Tsunemitsu, Chiaki</creator><creator>Terao, Katsuki</creator><creator>Nakazawa, Kenta</creator><creator>Satoh, Nobuo</creator><creator>Yamamoto, Hidekazu</creator><creator>Iwata, Futoshi</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7496-2550</orcidid><orcidid>https://orcid.org/0000-0001-6725-9250</orcidid><orcidid>https://orcid.org/0000-0001-7052-7164</orcidid><orcidid>https://orcid.org/0000-0002-2048-7579</orcidid></search><sort><creationdate>20191101</creationdate><title>Development of atomic force microscopy combined with scanning electron microscopy for investigating electronic devices</title><author>Uruma, Takeshi ; Tsunemitsu, Chiaki ; Terao, Katsuki ; Nakazawa, Kenta ; Satoh, Nobuo ; Yamamoto, Hidekazu ; Iwata, Futoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a30d0860ec324f4ec368aee56199941dbdffe2ebb085f85302b097b08642e8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Carrier density</topic><topic>Density distribution</topic><topic>Electron beam induced current</topic><topic>Electronic devices</topic><topic>Microscopes</topic><topic>Optical beam deflection</topic><topic>Optical microscopes</topic><topic>Optical scanners</topic><topic>P-n junctions</topic><topic>Qualitative analysis</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uruma, Takeshi</creatorcontrib><creatorcontrib>Tsunemitsu, Chiaki</creatorcontrib><creatorcontrib>Terao, Katsuki</creatorcontrib><creatorcontrib>Nakazawa, Kenta</creatorcontrib><creatorcontrib>Satoh, Nobuo</creatorcontrib><creatorcontrib>Yamamoto, Hidekazu</creatorcontrib><creatorcontrib>Iwata, Futoshi</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uruma, Takeshi</au><au>Tsunemitsu, Chiaki</au><au>Terao, Katsuki</au><au>Nakazawa, Kenta</au><au>Satoh, Nobuo</au><au>Yamamoto, Hidekazu</au><au>Iwata, Futoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of atomic force microscopy combined with scanning electron microscopy for investigating electronic devices</atitle><jtitle>AIP advances</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>11</issue><spage>115011</spage><epage>115011-8</epage><pages>115011-115011-8</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Atomic force microscopy (AFM) was combined with scanning electron microscopy (SEM) to investigate electronic devices. In general, under observation using an optical microscope, it is difficult to position the cantilever at an arbitrary scan area of an electronic device with a microstructure. Thus, a method for positioning the cantilever is necessary to observe electronic devices. In this study, we developed an AFM/SEM system to evaluate an electronic device. The optical beam deflection (OBD) unit of the system was designed for a distance between the SEM objective lens and a sample surface to be 2 cm. A sample space large enough to place an actual device was created, using a scan unit fabricated with three tube scanners. The scanning ranges of the scan unit are 21.9 µm × 23.1 µm in the XY plane and of 2.5 µm for the Z axis. The noise density in the OBD unit was measured to be 0.29 pm/Hz0.5, which is comparable to noise density values reported for commercial AFM systems. Using the electron beam of SEM, the electron beam induced current (EBIC) is generated from a p–n junction of a semiconductor. Using the EBIC, the cantilever was positioned at the p–n-junction of a Si fast recovery diode (FRD). In addition, scanning capacitance force microscopy (SCFM) and Kelvin probe force microscopy (KFM) were combined with the AFM/SEM system. The SCFM and KFM signals were in qualitative agreement with the expected carrier density distribution of the p and n-regions of the Si-FRD.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5125163</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7496-2550</orcidid><orcidid>https://orcid.org/0000-0001-6725-9250</orcidid><orcidid>https://orcid.org/0000-0001-7052-7164</orcidid><orcidid>https://orcid.org/0000-0002-2048-7579</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2019-11, Vol.9 (11), p.115011-115011-8 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5125163 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Atomic force microscopes Atomic force microscopy Carrier density Density distribution Electron beam induced current Electronic devices Microscopes Optical beam deflection Optical microscopes Optical scanners P-n junctions Qualitative analysis Scanning electron microscopy |
title | Development of atomic force microscopy combined with scanning electron microscopy for investigating electronic devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20atomic%20force%20microscopy%20combined%20with%20scanning%20electron%20microscopy%20for%20investigating%20electronic%20devices&rft.jtitle=AIP%20advances&rft.au=Uruma,%20Takeshi&rft.date=2019-11-01&rft.volume=9&rft.issue=11&rft.spage=115011&rft.epage=115011-8&rft.pages=115011-115011-8&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5125163&rft_dat=%3Cproquest_cross%3E2314408494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314408494&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_6a1c37ea1e78480f96b0ede4139ab544&rfr_iscdi=true |