Unitary circuit synthesis for tomography of generalized coherent states
We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables. Such expectations can be estimated by performing projective measurements on...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2019-11, Vol.60 (11) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 60 |
creator | Somma, Rolando D. |
description | We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables. Such expectations can be estimated by performing projective measurements on O(M3log(M/δ)/ε2) copies of the state, where M is the dimension of an associated Lie algebra, ɛ is a precision parameter, and 1 − δ is the required confidence level. The method can be implemented on a classical computer and runs in time O(M4log(M/ε)). It provides O(Mlog(M/ε)) simple unitaries that form the sequence. The overall complexity is then polynomial in M, being very efficient in cases where M is significantly smaller than the Hilbert space dimension, as for some fermion algebras. When the algebra of relevant observables is given by certain Pauli matrices, each simple unitary may be easily decomposed into two-qubit gates. We discuss applications to efficient quantum state tomography and classical simulations of quantum circuits. |
doi_str_mv | 10.1063/1.5121549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5121549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311791186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-113878bf6967cc45a6822ba1de1616537a4cc293d6b52589c4b29dc43ce4d8363</originalsourceid><addsrcrecordid>eNqd0E1LwzAYB_AgCs7pwW9Q9KTQmSdvTY8ydAoDL-4c0jRdM7amJpkwP70dHXj39Fx-z9sfoVvAM8CCPsGMAwHOyjM0ASzLvBBcnqMJxoTkhEl5ia5i3GAMIBmboMWqc0mHQ2ZcMHuXsnjoUmuji1njQ5b8zq-D7ttD5ptsbTsb9Nb92DozvrXBdkND0snGa3TR6G20N6c6RavXl8_5W778WLzPn5e5obJMOQCVhawaUYrCGMa1kIRUGmoLAgSnhWbGkJLWouKEy9KwipS1YdRYVksq6BTdjXN9TE5F45I1rfFdZ01SwAsKGA_ofkR98F97G5Pa-H3ohrsUoQBFOTx_HPUwKhN8jME2qg9uN2ShAKtjmArUKczBPo72uFEn57v_4W8f_qDq64b-AjNOgbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311791186</pqid></control><display><type>article</type><title>Unitary circuit synthesis for tomography of generalized coherent states</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Somma, Rolando D.</creator><creatorcontrib>Somma, Rolando D.</creatorcontrib><description>We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables. Such expectations can be estimated by performing projective measurements on O(M3log(M/δ)/ε2) copies of the state, where M is the dimension of an associated Lie algebra, ɛ is a precision parameter, and 1 − δ is the required confidence level. The method can be implemented on a classical computer and runs in time O(M4log(M/ε)). It provides O(Mlog(M/ε)) simple unitaries that form the sequence. The overall complexity is then polynomial in M, being very efficient in cases where M is significantly smaller than the Hilbert space dimension, as for some fermion algebras. When the algebra of relevant observables is given by certain Pauli matrices, each simple unitary may be easily decomposed into two-qubit gates. We discuss applications to efficient quantum state tomography and classical simulations of quantum circuits.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5121549</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Computer simulation ; Confidence intervals ; Fermions ; Gates (circuits) ; Hilbert space ; Lie groups ; Mathematical analysis ; Physics ; Polynomials ; Qubits (quantum computing) ; Tomography</subject><ispartof>Journal of mathematical physics, 2019-11, Vol.60 (11)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-113878bf6967cc45a6822ba1de1616537a4cc293d6b52589c4b29dc43ce4d8363</citedby><cites>FETCH-LOGICAL-c389t-113878bf6967cc45a6822ba1de1616537a4cc293d6b52589c4b29dc43ce4d8363</cites><orcidid>0000-0003-4335-2607 ; 0000000343352607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5121549$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1573100$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Somma, Rolando D.</creatorcontrib><title>Unitary circuit synthesis for tomography of generalized coherent states</title><title>Journal of mathematical physics</title><description>We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables. Such expectations can be estimated by performing projective measurements on O(M3log(M/δ)/ε2) copies of the state, where M is the dimension of an associated Lie algebra, ɛ is a precision parameter, and 1 − δ is the required confidence level. The method can be implemented on a classical computer and runs in time O(M4log(M/ε)). It provides O(Mlog(M/ε)) simple unitaries that form the sequence. The overall complexity is then polynomial in M, being very efficient in cases where M is significantly smaller than the Hilbert space dimension, as for some fermion algebras. When the algebra of relevant observables is given by certain Pauli matrices, each simple unitary may be easily decomposed into two-qubit gates. We discuss applications to efficient quantum state tomography and classical simulations of quantum circuits.</description><subject>Algebra</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Fermions</subject><subject>Gates (circuits)</subject><subject>Hilbert space</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Qubits (quantum computing)</subject><subject>Tomography</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LwzAYB_AgCs7pwW9Q9KTQmSdvTY8ydAoDL-4c0jRdM7amJpkwP70dHXj39Fx-z9sfoVvAM8CCPsGMAwHOyjM0ASzLvBBcnqMJxoTkhEl5ia5i3GAMIBmboMWqc0mHQ2ZcMHuXsnjoUmuji1njQ5b8zq-D7ttD5ptsbTsb9Nb92DozvrXBdkND0snGa3TR6G20N6c6RavXl8_5W778WLzPn5e5obJMOQCVhawaUYrCGMa1kIRUGmoLAgSnhWbGkJLWouKEy9KwipS1YdRYVksq6BTdjXN9TE5F45I1rfFdZ01SwAsKGA_ofkR98F97G5Pa-H3ohrsUoQBFOTx_HPUwKhN8jME2qg9uN2ShAKtjmArUKczBPo72uFEn57v_4W8f_qDq64b-AjNOgbA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Somma, Rolando D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4335-2607</orcidid><orcidid>https://orcid.org/0000000343352607</orcidid></search><sort><creationdate>20191101</creationdate><title>Unitary circuit synthesis for tomography of generalized coherent states</title><author>Somma, Rolando D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-113878bf6967cc45a6822ba1de1616537a4cc293d6b52589c4b29dc43ce4d8363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Fermions</topic><topic>Gates (circuits)</topic><topic>Hilbert space</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Qubits (quantum computing)</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somma, Rolando D.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somma, Rolando D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unitary circuit synthesis for tomography of generalized coherent states</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>60</volume><issue>11</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables. Such expectations can be estimated by performing projective measurements on O(M3log(M/δ)/ε2) copies of the state, where M is the dimension of an associated Lie algebra, ɛ is a precision parameter, and 1 − δ is the required confidence level. The method can be implemented on a classical computer and runs in time O(M4log(M/ε)). It provides O(Mlog(M/ε)) simple unitaries that form the sequence. The overall complexity is then polynomial in M, being very efficient in cases where M is significantly smaller than the Hilbert space dimension, as for some fermion algebras. When the algebra of relevant observables is given by certain Pauli matrices, each simple unitary may be easily decomposed into two-qubit gates. We discuss applications to efficient quantum state tomography and classical simulations of quantum circuits.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5121549</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4335-2607</orcidid><orcidid>https://orcid.org/0000000343352607</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2019-11, Vol.60 (11) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5121549 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Algebra Computer simulation Confidence intervals Fermions Gates (circuits) Hilbert space Lie groups Mathematical analysis Physics Polynomials Qubits (quantum computing) Tomography |
title | Unitary circuit synthesis for tomography of generalized coherent states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unitary%20circuit%20synthesis%20for%20tomography%20of%20generalized%20coherent%20states&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Somma,%20Rolando%20D.&rft.date=2019-11-01&rft.volume=60&rft.issue=11&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5121549&rft_dat=%3Cproquest_cross%3E2311791186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311791186&rft_id=info:pmid/&rfr_iscdi=true |