Category O for Takiff sl2
We investigate various ways to define an analog of Bernstein-Gelfand-Gelfand category O for the nonsemisimple Takiff extension of the Lie algebra sl2. We describe Gabriel quivers for blocks of these analogs of category O and prove the extension fullness of one of them in the category of all modules.
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2019-11, Vol.60 (11) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 60 |
creator | Mazorchuk, Volodymyr Söderberg, Christoffer |
description | We investigate various ways to define an analog of Bernstein-Gelfand-Gelfand category O for the nonsemisimple Takiff extension of the Lie algebra sl2. We describe Gabriel quivers for blocks of these analogs of category O and prove the extension fullness of one of them in the category of all modules. |
doi_str_mv | 10.1063/1.5121236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5121236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312036312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e86edc4445ca5c559c1d4f030418ccfe61775baef82ede6ce0dc12b0b9f7bcab3</originalsourceid><addsrcrecordid>eNp9z0tLw0AUBeBBFIzVhUt3AVcKqffOK5OlhPqAQjd1PUwmM5JaO3UmFfrvjaToQnBz7-bjHA4hlwhTBMnucCqQImXyiGQIqipKKdQxyQAoLShX6pScpbQCQFScZ-SqNr17DXGfL3IfYr40b533eVrTc3LizTq5i8OfkJeH2bJ-KuaLx-f6fl5YWtG-cEq61nLOhTXCClFZbLkHBhyVtd5JLEvRGOcVda2T1kFrkTbQVL5srGnYhFyPudsYPnYu9XoVdnEzVGrKkAKTwx3UzahsDClF5_U2du8m7jWC_l6uUR-WD_Z2tMl2vem7sPnBnyH-Qr1t_X_4b_IX79tkvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312036312</pqid></control><display><type>article</type><title>Category O for Takiff sl2</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mazorchuk, Volodymyr ; Söderberg, Christoffer</creator><creatorcontrib>Mazorchuk, Volodymyr ; Söderberg, Christoffer</creatorcontrib><description>We investigate various ways to define an analog of Bernstein-Gelfand-Gelfand category O for the nonsemisimple Takiff extension of the Lie algebra sl2. We describe Gabriel quivers for blocks of these analogs of category O and prove the extension fullness of one of them in the category of all modules.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5121236</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Lie groups ; Physics</subject><ispartof>Journal of mathematical physics, 2019-11, Vol.60 (11)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e86edc4445ca5c559c1d4f030418ccfe61775baef82ede6ce0dc12b0b9f7bcab3</citedby><cites>FETCH-LOGICAL-c292t-e86edc4445ca5c559c1d4f030418ccfe61775baef82ede6ce0dc12b0b9f7bcab3</cites><orcidid>0000-0002-4633-6218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5121236$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Mazorchuk, Volodymyr</creatorcontrib><creatorcontrib>Söderberg, Christoffer</creatorcontrib><title>Category O for Takiff sl2</title><title>Journal of mathematical physics</title><description>We investigate various ways to define an analog of Bernstein-Gelfand-Gelfand category O for the nonsemisimple Takiff extension of the Lie algebra sl2. We describe Gabriel quivers for blocks of these analogs of category O and prove the extension fullness of one of them in the category of all modules.</description><subject>Lie groups</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9z0tLw0AUBeBBFIzVhUt3AVcKqffOK5OlhPqAQjd1PUwmM5JaO3UmFfrvjaToQnBz7-bjHA4hlwhTBMnucCqQImXyiGQIqipKKdQxyQAoLShX6pScpbQCQFScZ-SqNr17DXGfL3IfYr40b533eVrTc3LizTq5i8OfkJeH2bJ-KuaLx-f6fl5YWtG-cEq61nLOhTXCClFZbLkHBhyVtd5JLEvRGOcVda2T1kFrkTbQVL5srGnYhFyPudsYPnYu9XoVdnEzVGrKkAKTwx3UzahsDClF5_U2du8m7jWC_l6uUR-WD_Z2tMl2vem7sPnBnyH-Qr1t_X_4b_IX79tkvQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Mazorchuk, Volodymyr</creator><creator>Söderberg, Christoffer</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4633-6218</orcidid></search><sort><creationdate>20191101</creationdate><title>Category O for Takiff sl2</title><author>Mazorchuk, Volodymyr ; Söderberg, Christoffer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e86edc4445ca5c559c1d4f030418ccfe61775baef82ede6ce0dc12b0b9f7bcab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Lie groups</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazorchuk, Volodymyr</creatorcontrib><creatorcontrib>Söderberg, Christoffer</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazorchuk, Volodymyr</au><au>Söderberg, Christoffer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Category O for Takiff sl2</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>60</volume><issue>11</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We investigate various ways to define an analog of Bernstein-Gelfand-Gelfand category O for the nonsemisimple Takiff extension of the Lie algebra sl2. We describe Gabriel quivers for blocks of these analogs of category O and prove the extension fullness of one of them in the category of all modules.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5121236</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4633-6218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2019-11, Vol.60 (11) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5121236 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Lie groups Physics |
title | Category O for Takiff sl2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Category%20O%20for%20Takiff%20sl2&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Mazorchuk,%20Volodymyr&rft.date=2019-11-01&rft.volume=60&rft.issue=11&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5121236&rft_dat=%3Cproquest_cross%3E2312036312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312036312&rft_id=info:pmid/&rfr_iscdi=true |