Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect
Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalco...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-01, Vol.127 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 127 |
creator | Da, Haixia Song, Qi Dong, Peng Ye, Huapeng Yan, Xiaohong |
description | Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalcogenides in the presence of the magnetic proximity effect, which is introduced by a ferromagnetic substrate. It is found that the profile and magnitude of the spin and valley Hall conductivities in monolayer transition metal dichalcogenides are different with and without magnetic exchange interactions. This difference can be attributed to the asymmetrical band structure of monolayer transition metal dichalcogenides and chemical potential-dependent interband transitions. The former comes from the fact that the magnetic proximity effect can effectively break the time reversal symmetry and thus lead to the asymmetry of the band structures between
K
+ and
K
− valleys, which causes the final changes in the spin and valley Hall conductivities. Our findings demonstrate that the magnetic proximity effect can affect the spin as well as valley Hall behaviors in monolayer transition metal dichalcogenides, and this strategy is applicable for other two-dimensional layered materials, which is promising for spintronic and valleytronic devices. |
doi_str_mv | 10.1063/1.5118327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5118327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334841071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a98856e4b22d4cde5415ebf7e5fd7ab6e36a9a13b7b9cb66efe2ea839ee91d083</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv0HAk8LWZLP_cpSiVih40XPIJpOasrtZk7S4396UFrx7ejDz4828h9AtJQtKKvZIFyWlDcvrMzSjpOFZXZbkHM0IyWnW8JpfoqsQtoQcKD5DfumG6F2HncFhtAOWg8Z72XUw4VUSDMaAigGnVe8G18kJPI5eDsFG69IQouywtupLdsptYLAaAm4n3MvNANEqPHr3Y3sbp5PXNbowsgtwc9I5-nx5_liusvX769vyaZ0pxlnMJG-asoKizXNdKA1lQUtoTQ2l0bVsK2CV5JKytm65aqsKDOQgUygATjVp2BzdHX3TA987CFFs3c4P6aTIGSuagpKaJur-SCnvQvBgxOhtL_0kKBGHSgUVp0oT-3Bkg7JRHuL_D947_weKURv2C9Fch2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334841071</pqid></control><display><type>article</type><title>Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Da, Haixia ; Song, Qi ; Dong, Peng ; Ye, Huapeng ; Yan, Xiaohong</creator><creatorcontrib>Da, Haixia ; Song, Qi ; Dong, Peng ; Ye, Huapeng ; Yan, Xiaohong</creatorcontrib><description>Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalcogenides in the presence of the magnetic proximity effect, which is introduced by a ferromagnetic substrate. It is found that the profile and magnitude of the spin and valley Hall conductivities in monolayer transition metal dichalcogenides are different with and without magnetic exchange interactions. This difference can be attributed to the asymmetrical band structure of monolayer transition metal dichalcogenides and chemical potential-dependent interband transitions. The former comes from the fact that the magnetic proximity effect can effectively break the time reversal symmetry and thus lead to the asymmetry of the band structures between
K
+ and
K
− valleys, which causes the final changes in the spin and valley Hall conductivities. Our findings demonstrate that the magnetic proximity effect can affect the spin as well as valley Hall behaviors in monolayer transition metal dichalcogenides, and this strategy is applicable for other two-dimensional layered materials, which is promising for spintronic and valleytronic devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5118327</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Asymmetry ; Chalcogenides ; Chemical potential ; Conductivity ; Ferromagnetism ; Layered materials ; Monolayers ; Organic chemistry ; Proximity ; Proximity effect (electricity) ; Spin-orbit interactions ; Substrates ; Symmetry ; Transition metal compounds</subject><ispartof>Journal of applied physics, 2020-01, Vol.127 (2)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a98856e4b22d4cde5415ebf7e5fd7ab6e36a9a13b7b9cb66efe2ea839ee91d083</citedby><cites>FETCH-LOGICAL-c393t-a98856e4b22d4cde5415ebf7e5fd7ab6e36a9a13b7b9cb66efe2ea839ee91d083</cites><orcidid>0000-0001-8504-2987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5118327$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Da, Haixia</creatorcontrib><creatorcontrib>Song, Qi</creatorcontrib><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Ye, Huapeng</creatorcontrib><creatorcontrib>Yan, Xiaohong</creatorcontrib><title>Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect</title><title>Journal of applied physics</title><description>Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalcogenides in the presence of the magnetic proximity effect, which is introduced by a ferromagnetic substrate. It is found that the profile and magnitude of the spin and valley Hall conductivities in monolayer transition metal dichalcogenides are different with and without magnetic exchange interactions. This difference can be attributed to the asymmetrical band structure of monolayer transition metal dichalcogenides and chemical potential-dependent interband transitions. The former comes from the fact that the magnetic proximity effect can effectively break the time reversal symmetry and thus lead to the asymmetry of the band structures between
K
+ and
K
− valleys, which causes the final changes in the spin and valley Hall conductivities. Our findings demonstrate that the magnetic proximity effect can affect the spin as well as valley Hall behaviors in monolayer transition metal dichalcogenides, and this strategy is applicable for other two-dimensional layered materials, which is promising for spintronic and valleytronic devices.</description><subject>Applied physics</subject><subject>Asymmetry</subject><subject>Chalcogenides</subject><subject>Chemical potential</subject><subject>Conductivity</subject><subject>Ferromagnetism</subject><subject>Layered materials</subject><subject>Monolayers</subject><subject>Organic chemistry</subject><subject>Proximity</subject><subject>Proximity effect (electricity)</subject><subject>Spin-orbit interactions</subject><subject>Substrates</subject><subject>Symmetry</subject><subject>Transition metal compounds</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv0HAk8LWZLP_cpSiVih40XPIJpOasrtZk7S4396UFrx7ejDz4828h9AtJQtKKvZIFyWlDcvrMzSjpOFZXZbkHM0IyWnW8JpfoqsQtoQcKD5DfumG6F2HncFhtAOWg8Z72XUw4VUSDMaAigGnVe8G18kJPI5eDsFG69IQouywtupLdsptYLAaAm4n3MvNANEqPHr3Y3sbp5PXNbowsgtwc9I5-nx5_liusvX769vyaZ0pxlnMJG-asoKizXNdKA1lQUtoTQ2l0bVsK2CV5JKytm65aqsKDOQgUygATjVp2BzdHX3TA987CFFs3c4P6aTIGSuagpKaJur-SCnvQvBgxOhtL_0kKBGHSgUVp0oT-3Bkg7JRHuL_D947_weKURv2C9Fch2E</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Da, Haixia</creator><creator>Song, Qi</creator><creator>Dong, Peng</creator><creator>Ye, Huapeng</creator><creator>Yan, Xiaohong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8504-2987</orcidid></search><sort><creationdate>20200114</creationdate><title>Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect</title><author>Da, Haixia ; Song, Qi ; Dong, Peng ; Ye, Huapeng ; Yan, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a98856e4b22d4cde5415ebf7e5fd7ab6e36a9a13b7b9cb66efe2ea839ee91d083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Asymmetry</topic><topic>Chalcogenides</topic><topic>Chemical potential</topic><topic>Conductivity</topic><topic>Ferromagnetism</topic><topic>Layered materials</topic><topic>Monolayers</topic><topic>Organic chemistry</topic><topic>Proximity</topic><topic>Proximity effect (electricity)</topic><topic>Spin-orbit interactions</topic><topic>Substrates</topic><topic>Symmetry</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da, Haixia</creatorcontrib><creatorcontrib>Song, Qi</creatorcontrib><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Ye, Huapeng</creatorcontrib><creatorcontrib>Yan, Xiaohong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da, Haixia</au><au>Song, Qi</au><au>Dong, Peng</au><au>Ye, Huapeng</au><au>Yan, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect</atitle><jtitle>Journal of applied physics</jtitle><date>2020-01-14</date><risdate>2020</risdate><volume>127</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalcogenides in the presence of the magnetic proximity effect, which is introduced by a ferromagnetic substrate. It is found that the profile and magnitude of the spin and valley Hall conductivities in monolayer transition metal dichalcogenides are different with and without magnetic exchange interactions. This difference can be attributed to the asymmetrical band structure of monolayer transition metal dichalcogenides and chemical potential-dependent interband transitions. The former comes from the fact that the magnetic proximity effect can effectively break the time reversal symmetry and thus lead to the asymmetry of the band structures between
K
+ and
K
− valleys, which causes the final changes in the spin and valley Hall conductivities. Our findings demonstrate that the magnetic proximity effect can affect the spin as well as valley Hall behaviors in monolayer transition metal dichalcogenides, and this strategy is applicable for other two-dimensional layered materials, which is promising for spintronic and valleytronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5118327</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8504-2987</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-01, Vol.127 (2) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5118327 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Asymmetry Chalcogenides Chemical potential Conductivity Ferromagnetism Layered materials Monolayers Organic chemistry Proximity Proximity effect (electricity) Spin-orbit interactions Substrates Symmetry Transition metal compounds |
title | Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20spin%20and%20valley%20Hall%20effects%20in%20monolayer%20transition%20metal%20dichalcogenides%20by%20magnetic%20proximity%20effect&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Da,%20Haixia&rft.date=2020-01-14&rft.volume=127&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5118327&rft_dat=%3Cproquest_cross%3E2334841071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334841071&rft_id=info:pmid/&rfr_iscdi=true |