Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect

Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-01, Vol.127 (2)
Hauptverfasser: Da, Haixia, Song, Qi, Dong, Peng, Ye, Huapeng, Yan, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of applied physics
container_volume 127
creator Da, Haixia
Song, Qi
Dong, Peng
Ye, Huapeng
Yan, Xiaohong
description Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalcogenides in the presence of the magnetic proximity effect, which is introduced by a ferromagnetic substrate. It is found that the profile and magnitude of the spin and valley Hall conductivities in monolayer transition metal dichalcogenides are different with and without magnetic exchange interactions. This difference can be attributed to the asymmetrical band structure of monolayer transition metal dichalcogenides and chemical potential-dependent interband transitions. The former comes from the fact that the magnetic proximity effect can effectively break the time reversal symmetry and thus lead to the asymmetry of the band structures between K + and K − valleys, which causes the final changes in the spin and valley Hall conductivities. Our findings demonstrate that the magnetic proximity effect can affect the spin as well as valley Hall behaviors in monolayer transition metal dichalcogenides, and this strategy is applicable for other two-dimensional layered materials, which is promising for spintronic and valleytronic devices.
doi_str_mv 10.1063/1.5118327
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5118327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334841071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a98856e4b22d4cde5415ebf7e5fd7ab6e36a9a13b7b9cb66efe2ea839ee91d083</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv0HAk8LWZLP_cpSiVih40XPIJpOasrtZk7S4396UFrx7ejDz4828h9AtJQtKKvZIFyWlDcvrMzSjpOFZXZbkHM0IyWnW8JpfoqsQtoQcKD5DfumG6F2HncFhtAOWg8Z72XUw4VUSDMaAigGnVe8G18kJPI5eDsFG69IQouywtupLdsptYLAaAm4n3MvNANEqPHr3Y3sbp5PXNbowsgtwc9I5-nx5_liusvX769vyaZ0pxlnMJG-asoKizXNdKA1lQUtoTQ2l0bVsK2CV5JKytm65aqsKDOQgUygATjVp2BzdHX3TA987CFFs3c4P6aTIGSuagpKaJur-SCnvQvBgxOhtL_0kKBGHSgUVp0oT-3Bkg7JRHuL_D947_weKURv2C9Fch2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334841071</pqid></control><display><type>article</type><title>Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Da, Haixia ; Song, Qi ; Dong, Peng ; Ye, Huapeng ; Yan, Xiaohong</creator><creatorcontrib>Da, Haixia ; Song, Qi ; Dong, Peng ; Ye, Huapeng ; Yan, Xiaohong</creatorcontrib><description>Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalcogenides in the presence of the magnetic proximity effect, which is introduced by a ferromagnetic substrate. It is found that the profile and magnitude of the spin and valley Hall conductivities in monolayer transition metal dichalcogenides are different with and without magnetic exchange interactions. This difference can be attributed to the asymmetrical band structure of monolayer transition metal dichalcogenides and chemical potential-dependent interband transitions. The former comes from the fact that the magnetic proximity effect can effectively break the time reversal symmetry and thus lead to the asymmetry of the band structures between K + and K − valleys, which causes the final changes in the spin and valley Hall conductivities. Our findings demonstrate that the magnetic proximity effect can affect the spin as well as valley Hall behaviors in monolayer transition metal dichalcogenides, and this strategy is applicable for other two-dimensional layered materials, which is promising for spintronic and valleytronic devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5118327</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Asymmetry ; Chalcogenides ; Chemical potential ; Conductivity ; Ferromagnetism ; Layered materials ; Monolayers ; Organic chemistry ; Proximity ; Proximity effect (electricity) ; Spin-orbit interactions ; Substrates ; Symmetry ; Transition metal compounds</subject><ispartof>Journal of applied physics, 2020-01, Vol.127 (2)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a98856e4b22d4cde5415ebf7e5fd7ab6e36a9a13b7b9cb66efe2ea839ee91d083</citedby><cites>FETCH-LOGICAL-c393t-a98856e4b22d4cde5415ebf7e5fd7ab6e36a9a13b7b9cb66efe2ea839ee91d083</cites><orcidid>0000-0001-8504-2987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5118327$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Da, Haixia</creatorcontrib><creatorcontrib>Song, Qi</creatorcontrib><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Ye, Huapeng</creatorcontrib><creatorcontrib>Yan, Xiaohong</creatorcontrib><title>Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect</title><title>Journal of applied physics</title><description>Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalcogenides in the presence of the magnetic proximity effect, which is introduced by a ferromagnetic substrate. It is found that the profile and magnitude of the spin and valley Hall conductivities in monolayer transition metal dichalcogenides are different with and without magnetic exchange interactions. This difference can be attributed to the asymmetrical band structure of monolayer transition metal dichalcogenides and chemical potential-dependent interband transitions. The former comes from the fact that the magnetic proximity effect can effectively break the time reversal symmetry and thus lead to the asymmetry of the band structures between K + and K − valleys, which causes the final changes in the spin and valley Hall conductivities. Our findings demonstrate that the magnetic proximity effect can affect the spin as well as valley Hall behaviors in monolayer transition metal dichalcogenides, and this strategy is applicable for other two-dimensional layered materials, which is promising for spintronic and valleytronic devices.</description><subject>Applied physics</subject><subject>Asymmetry</subject><subject>Chalcogenides</subject><subject>Chemical potential</subject><subject>Conductivity</subject><subject>Ferromagnetism</subject><subject>Layered materials</subject><subject>Monolayers</subject><subject>Organic chemistry</subject><subject>Proximity</subject><subject>Proximity effect (electricity)</subject><subject>Spin-orbit interactions</subject><subject>Substrates</subject><subject>Symmetry</subject><subject>Transition metal compounds</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv0HAk8LWZLP_cpSiVih40XPIJpOasrtZk7S4396UFrx7ejDz4828h9AtJQtKKvZIFyWlDcvrMzSjpOFZXZbkHM0IyWnW8JpfoqsQtoQcKD5DfumG6F2HncFhtAOWg8Z72XUw4VUSDMaAigGnVe8G18kJPI5eDsFG69IQouywtupLdsptYLAaAm4n3MvNANEqPHr3Y3sbp5PXNbowsgtwc9I5-nx5_liusvX769vyaZ0pxlnMJG-asoKizXNdKA1lQUtoTQ2l0bVsK2CV5JKytm65aqsKDOQgUygATjVp2BzdHX3TA987CFFs3c4P6aTIGSuagpKaJur-SCnvQvBgxOhtL_0kKBGHSgUVp0oT-3Bkg7JRHuL_D947_weKURv2C9Fch2E</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Da, Haixia</creator><creator>Song, Qi</creator><creator>Dong, Peng</creator><creator>Ye, Huapeng</creator><creator>Yan, Xiaohong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8504-2987</orcidid></search><sort><creationdate>20200114</creationdate><title>Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect</title><author>Da, Haixia ; Song, Qi ; Dong, Peng ; Ye, Huapeng ; Yan, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a98856e4b22d4cde5415ebf7e5fd7ab6e36a9a13b7b9cb66efe2ea839ee91d083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Asymmetry</topic><topic>Chalcogenides</topic><topic>Chemical potential</topic><topic>Conductivity</topic><topic>Ferromagnetism</topic><topic>Layered materials</topic><topic>Monolayers</topic><topic>Organic chemistry</topic><topic>Proximity</topic><topic>Proximity effect (electricity)</topic><topic>Spin-orbit interactions</topic><topic>Substrates</topic><topic>Symmetry</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da, Haixia</creatorcontrib><creatorcontrib>Song, Qi</creatorcontrib><creatorcontrib>Dong, Peng</creatorcontrib><creatorcontrib>Ye, Huapeng</creatorcontrib><creatorcontrib>Yan, Xiaohong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da, Haixia</au><au>Song, Qi</au><au>Dong, Peng</au><au>Ye, Huapeng</au><au>Yan, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect</atitle><jtitle>Journal of applied physics</jtitle><date>2020-01-14</date><risdate>2020</risdate><volume>127</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Monolayer transition metal dichalcogenides have strong spin–orbit coupling and broken space inversion symmetry, which enable them to be the key building blocks in realizing spin and valley-related effects. Here, we report the spin and valley Hall conductivities of monolayer transition metal dichalcogenides in the presence of the magnetic proximity effect, which is introduced by a ferromagnetic substrate. It is found that the profile and magnitude of the spin and valley Hall conductivities in monolayer transition metal dichalcogenides are different with and without magnetic exchange interactions. This difference can be attributed to the asymmetrical band structure of monolayer transition metal dichalcogenides and chemical potential-dependent interband transitions. The former comes from the fact that the magnetic proximity effect can effectively break the time reversal symmetry and thus lead to the asymmetry of the band structures between K + and K − valleys, which causes the final changes in the spin and valley Hall conductivities. Our findings demonstrate that the magnetic proximity effect can affect the spin as well as valley Hall behaviors in monolayer transition metal dichalcogenides, and this strategy is applicable for other two-dimensional layered materials, which is promising for spintronic and valleytronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5118327</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8504-2987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-01, Vol.127 (2)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_5118327
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Asymmetry
Chalcogenides
Chemical potential
Conductivity
Ferromagnetism
Layered materials
Monolayers
Organic chemistry
Proximity
Proximity effect (electricity)
Spin-orbit interactions
Substrates
Symmetry
Transition metal compounds
title Control of spin and valley Hall effects in monolayer transition metal dichalcogenides by magnetic proximity effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20spin%20and%20valley%20Hall%20effects%20in%20monolayer%20transition%20metal%20dichalcogenides%20by%20magnetic%20proximity%20effect&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Da,%20Haixia&rft.date=2020-01-14&rft.volume=127&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5118327&rft_dat=%3Cproquest_cross%3E2334841071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334841071&rft_id=info:pmid/&rfr_iscdi=true