Laser intensity scaling of the magnetic field from a laser-driven coil target

We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as B ∝ I laser 0.66 ± 0.13. This scaling relation can be derived from the measured voltage approximated by the laser-hea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-02, Vol.127 (8)
Hauptverfasser: Williams, G. J., Patankar, S., Mariscal, D. A., Tikhonchuk, V. T., Bude, J. D., Carr, C. W., Goyon, C., Norton, M. A., Pollock, B. B., Rubenchik, A. M., Swadling, G. F., Tubman, E. R., Moody, J. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of applied physics
container_volume 127
creator Williams, G. J.
Patankar, S.
Mariscal, D. A.
Tikhonchuk, V. T.
Bude, J. D.
Carr, C. W.
Goyon, C.
Norton, M. A.
Pollock, B. B.
Rubenchik, A. M.
Swadling, G. F.
Tubman, E. R.
Moody, J. D.
description We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as B ∝ I laser 0.66 ± 0.13. This scaling relation can be derived from the measured voltage approximated by the laser-heated plasma electron temperature T e. The experiments used a 1053 nm laser with pulse lengths ranging from 0.5 to 20 ns and intensities ranging from 10 9 to 10 14 W / cm 2 to generate an electric potential that drives current through the coil. We show that the behavior of the coil can be described with a lumped-element circuit model.
doi_str_mv 10.1063/1.5117162
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5117162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365815834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-c6f49d6644fc23ec1bb284b4402ef224ecfe4b09074bb6c5ba0d999f261d76603</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcIulKYmmRymSxFvEHFja5DJpO0KdOkJmmhb--UKbh3dTbf-c_hB-AaoxlGvH7AM4axwJycgAlGjawEY-gUTBAiuGqkkOfgIucVQhg3tZyAj7nONkEfig3Zlz3MRvc-LGB0sCwtXOtFsMUb6LztO-hSXEMN-8NS1SW_swGa6HtYdFrYcgnOnO6zvTrOKfh-ef56eqvmn6_vT4_zylDGSmW4o7LjnFJnSG0NblvS0JZSRKwjhFrjLG2RRIK2LTes1aiTUjrCcSc4R_UU3Iy5MRevsvHFmqWJIVhTFBaiJlQM6HZEmxR_tjYXtYrbFIa_FKk5azBrajqou1GZFHNO1qlN8mud9gojdahUYXWsdLD3oz1c1MXH8D-8i-kPqk3n6l_TOINW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365815834</pqid></control><display><type>article</type><title>Laser intensity scaling of the magnetic field from a laser-driven coil target</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Williams, G. J. ; Patankar, S. ; Mariscal, D. A. ; Tikhonchuk, V. T. ; Bude, J. D. ; Carr, C. W. ; Goyon, C. ; Norton, M. A. ; Pollock, B. B. ; Rubenchik, A. M. ; Swadling, G. F. ; Tubman, E. R. ; Moody, J. D.</creator><creatorcontrib>Williams, G. J. ; Patankar, S. ; Mariscal, D. A. ; Tikhonchuk, V. T. ; Bude, J. D. ; Carr, C. W. ; Goyon, C. ; Norton, M. A. ; Pollock, B. B. ; Rubenchik, A. M. ; Swadling, G. F. ; Tubman, E. R. ; Moody, J. D. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as B ∝ I laser 0.66 ± 0.13. This scaling relation can be derived from the measured voltage approximated by the laser-heated plasma electron temperature T e. The experiments used a 1053 nm laser with pulse lengths ranging from 0.5 to 20 ns and intensities ranging from 10 9 to 10 14 W / cm 2 to generate an electric potential that drives current through the coil. We show that the behavior of the coil can be described with a lumped-element circuit model.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5117162</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Circuit theorems ; Circuits ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Electrical measurement ; Electrical properties and parameters ; Electron energy ; Electronic circuits ; Electrons ; Electrostatics ; Field coils ; Laser ablation ; Laser beam heating ; Lasers ; Magnetic fields ; Plasma diagnostics ; Plasma diodes ; Plasma properties and parameters ; Thermodynamic properties</subject><ispartof>Journal of applied physics, 2020-02, Vol.127 (8)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-c6f49d6644fc23ec1bb284b4402ef224ecfe4b09074bb6c5ba0d999f261d76603</citedby><cites>FETCH-LOGICAL-c455t-c6f49d6644fc23ec1bb284b4402ef224ecfe4b09074bb6c5ba0d999f261d76603</cites><orcidid>0000-0001-8370-8837 ; 0000-0001-7532-5879 ; 0000-0002-8059-9871 ; 0000-0002-6495-5696 ; 0000-0003-3786-0912 ; 0000000264955696 ; 0000000175325879 ; 0000000183708837 ; 0000000337860912 ; 0000000280599871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5117162$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1773247$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, G. J.</creatorcontrib><creatorcontrib>Patankar, S.</creatorcontrib><creatorcontrib>Mariscal, D. A.</creatorcontrib><creatorcontrib>Tikhonchuk, V. T.</creatorcontrib><creatorcontrib>Bude, J. D.</creatorcontrib><creatorcontrib>Carr, C. W.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Norton, M. A.</creatorcontrib><creatorcontrib>Pollock, B. B.</creatorcontrib><creatorcontrib>Rubenchik, A. M.</creatorcontrib><creatorcontrib>Swadling, G. F.</creatorcontrib><creatorcontrib>Tubman, E. R.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Laser intensity scaling of the magnetic field from a laser-driven coil target</title><title>Journal of applied physics</title><description>We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as B ∝ I laser 0.66 ± 0.13. This scaling relation can be derived from the measured voltage approximated by the laser-heated plasma electron temperature T e. The experiments used a 1053 nm laser with pulse lengths ranging from 0.5 to 20 ns and intensities ranging from 10 9 to 10 14 W / cm 2 to generate an electric potential that drives current through the coil. We show that the behavior of the coil can be described with a lumped-element circuit model.</description><subject>Applied physics</subject><subject>Circuit theorems</subject><subject>Circuits</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Electrical measurement</subject><subject>Electrical properties and parameters</subject><subject>Electron energy</subject><subject>Electronic circuits</subject><subject>Electrons</subject><subject>Electrostatics</subject><subject>Field coils</subject><subject>Laser ablation</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Plasma diagnostics</subject><subject>Plasma diodes</subject><subject>Plasma properties and parameters</subject><subject>Thermodynamic properties</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcIulKYmmRymSxFvEHFja5DJpO0KdOkJmmhb--UKbh3dTbf-c_hB-AaoxlGvH7AM4axwJycgAlGjawEY-gUTBAiuGqkkOfgIucVQhg3tZyAj7nONkEfig3Zlz3MRvc-LGB0sCwtXOtFsMUb6LztO-hSXEMN-8NS1SW_swGa6HtYdFrYcgnOnO6zvTrOKfh-ef56eqvmn6_vT4_zylDGSmW4o7LjnFJnSG0NblvS0JZSRKwjhFrjLG2RRIK2LTes1aiTUjrCcSc4R_UU3Iy5MRevsvHFmqWJIVhTFBaiJlQM6HZEmxR_tjYXtYrbFIa_FKk5azBrajqou1GZFHNO1qlN8mud9gojdahUYXWsdLD3oz1c1MXH8D-8i-kPqk3n6l_TOINW</recordid><startdate>20200224</startdate><enddate>20200224</enddate><creator>Williams, G. J.</creator><creator>Patankar, S.</creator><creator>Mariscal, D. A.</creator><creator>Tikhonchuk, V. T.</creator><creator>Bude, J. D.</creator><creator>Carr, C. W.</creator><creator>Goyon, C.</creator><creator>Norton, M. A.</creator><creator>Pollock, B. B.</creator><creator>Rubenchik, A. M.</creator><creator>Swadling, G. F.</creator><creator>Tubman, E. R.</creator><creator>Moody, J. D.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8370-8837</orcidid><orcidid>https://orcid.org/0000-0001-7532-5879</orcidid><orcidid>https://orcid.org/0000-0002-8059-9871</orcidid><orcidid>https://orcid.org/0000-0002-6495-5696</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000000264955696</orcidid><orcidid>https://orcid.org/0000000175325879</orcidid><orcidid>https://orcid.org/0000000183708837</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000280599871</orcidid></search><sort><creationdate>20200224</creationdate><title>Laser intensity scaling of the magnetic field from a laser-driven coil target</title><author>Williams, G. J. ; Patankar, S. ; Mariscal, D. A. ; Tikhonchuk, V. T. ; Bude, J. D. ; Carr, C. W. ; Goyon, C. ; Norton, M. A. ; Pollock, B. B. ; Rubenchik, A. M. ; Swadling, G. F. ; Tubman, E. R. ; Moody, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-c6f49d6644fc23ec1bb284b4402ef224ecfe4b09074bb6c5ba0d999f261d76603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Circuit theorems</topic><topic>Circuits</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Electrical measurement</topic><topic>Electrical properties and parameters</topic><topic>Electron energy</topic><topic>Electronic circuits</topic><topic>Electrons</topic><topic>Electrostatics</topic><topic>Field coils</topic><topic>Laser ablation</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Plasma diagnostics</topic><topic>Plasma diodes</topic><topic>Plasma properties and parameters</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, G. J.</creatorcontrib><creatorcontrib>Patankar, S.</creatorcontrib><creatorcontrib>Mariscal, D. A.</creatorcontrib><creatorcontrib>Tikhonchuk, V. T.</creatorcontrib><creatorcontrib>Bude, J. D.</creatorcontrib><creatorcontrib>Carr, C. W.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Norton, M. A.</creatorcontrib><creatorcontrib>Pollock, B. B.</creatorcontrib><creatorcontrib>Rubenchik, A. M.</creatorcontrib><creatorcontrib>Swadling, G. F.</creatorcontrib><creatorcontrib>Tubman, E. R.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, G. J.</au><au>Patankar, S.</au><au>Mariscal, D. A.</au><au>Tikhonchuk, V. T.</au><au>Bude, J. D.</au><au>Carr, C. W.</au><au>Goyon, C.</au><au>Norton, M. A.</au><au>Pollock, B. B.</au><au>Rubenchik, A. M.</au><au>Swadling, G. F.</au><au>Tubman, E. R.</au><au>Moody, J. D.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser intensity scaling of the magnetic field from a laser-driven coil target</atitle><jtitle>Journal of applied physics</jtitle><date>2020-02-24</date><risdate>2020</risdate><volume>127</volume><issue>8</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as B ∝ I laser 0.66 ± 0.13. This scaling relation can be derived from the measured voltage approximated by the laser-heated plasma electron temperature T e. The experiments used a 1053 nm laser with pulse lengths ranging from 0.5 to 20 ns and intensities ranging from 10 9 to 10 14 W / cm 2 to generate an electric potential that drives current through the coil. We show that the behavior of the coil can be described with a lumped-element circuit model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5117162</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8370-8837</orcidid><orcidid>https://orcid.org/0000-0001-7532-5879</orcidid><orcidid>https://orcid.org/0000-0002-8059-9871</orcidid><orcidid>https://orcid.org/0000-0002-6495-5696</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000000264955696</orcidid><orcidid>https://orcid.org/0000000175325879</orcidid><orcidid>https://orcid.org/0000000183708837</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000280599871</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-02, Vol.127 (8)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_5117162
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Circuit theorems
Circuits
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Electrical measurement
Electrical properties and parameters
Electron energy
Electronic circuits
Electrons
Electrostatics
Field coils
Laser ablation
Laser beam heating
Lasers
Magnetic fields
Plasma diagnostics
Plasma diodes
Plasma properties and parameters
Thermodynamic properties
title Laser intensity scaling of the magnetic field from a laser-driven coil target
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20intensity%20scaling%20of%20the%20magnetic%20field%20from%20a%20laser-driven%20coil%20target&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Williams,%20G.%20J.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-02-24&rft.volume=127&rft.issue=8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5117162&rft_dat=%3Cproquest_cross%3E2365815834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365815834&rft_id=info:pmid/&rfr_iscdi=true