Laser intensity scaling of the magnetic field from a laser-driven coil target
We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as B ∝ I laser 0.66 ± 0.13. This scaling relation can be derived from the measured voltage approximated by the laser-hea...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-02, Vol.127 (8) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 127 |
creator | Williams, G. J. Patankar, S. Mariscal, D. A. Tikhonchuk, V. T. Bude, J. D. Carr, C. W. Goyon, C. Norton, M. A. Pollock, B. B. Rubenchik, A. M. Swadling, G. F. Tubman, E. R. Moody, J. D. |
description | We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as
B
∝
I
laser
0.66
±
0.13. This scaling relation can be derived from the measured voltage approximated by the laser-heated plasma electron temperature
T
e. The experiments used a 1053 nm laser with pulse lengths ranging from 0.5 to 20 ns and intensities ranging from
10
9 to
10
14
W
/
cm
2 to generate an electric potential that drives current through the coil. We show that the behavior of the coil can be described with a lumped-element circuit model. |
doi_str_mv | 10.1063/1.5117162 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5117162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365815834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-c6f49d6644fc23ec1bb284b4402ef224ecfe4b09074bb6c5ba0d999f261d76603</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcIulKYmmRymSxFvEHFja5DJpO0KdOkJmmhb--UKbh3dTbf-c_hB-AaoxlGvH7AM4axwJycgAlGjawEY-gUTBAiuGqkkOfgIucVQhg3tZyAj7nONkEfig3Zlz3MRvc-LGB0sCwtXOtFsMUb6LztO-hSXEMN-8NS1SW_swGa6HtYdFrYcgnOnO6zvTrOKfh-ef56eqvmn6_vT4_zylDGSmW4o7LjnFJnSG0NblvS0JZSRKwjhFrjLG2RRIK2LTes1aiTUjrCcSc4R_UU3Iy5MRevsvHFmqWJIVhTFBaiJlQM6HZEmxR_tjYXtYrbFIa_FKk5azBrajqou1GZFHNO1qlN8mud9gojdahUYXWsdLD3oz1c1MXH8D-8i-kPqk3n6l_TOINW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365815834</pqid></control><display><type>article</type><title>Laser intensity scaling of the magnetic field from a laser-driven coil target</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Williams, G. J. ; Patankar, S. ; Mariscal, D. A. ; Tikhonchuk, V. T. ; Bude, J. D. ; Carr, C. W. ; Goyon, C. ; Norton, M. A. ; Pollock, B. B. ; Rubenchik, A. M. ; Swadling, G. F. ; Tubman, E. R. ; Moody, J. D.</creator><creatorcontrib>Williams, G. J. ; Patankar, S. ; Mariscal, D. A. ; Tikhonchuk, V. T. ; Bude, J. D. ; Carr, C. W. ; Goyon, C. ; Norton, M. A. ; Pollock, B. B. ; Rubenchik, A. M. ; Swadling, G. F. ; Tubman, E. R. ; Moody, J. D. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as
B
∝
I
laser
0.66
±
0.13. This scaling relation can be derived from the measured voltage approximated by the laser-heated plasma electron temperature
T
e. The experiments used a 1053 nm laser with pulse lengths ranging from 0.5 to 20 ns and intensities ranging from
10
9 to
10
14
W
/
cm
2 to generate an electric potential that drives current through the coil. We show that the behavior of the coil can be described with a lumped-element circuit model.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5117162</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Circuit theorems ; Circuits ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Electrical measurement ; Electrical properties and parameters ; Electron energy ; Electronic circuits ; Electrons ; Electrostatics ; Field coils ; Laser ablation ; Laser beam heating ; Lasers ; Magnetic fields ; Plasma diagnostics ; Plasma diodes ; Plasma properties and parameters ; Thermodynamic properties</subject><ispartof>Journal of applied physics, 2020-02, Vol.127 (8)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-c6f49d6644fc23ec1bb284b4402ef224ecfe4b09074bb6c5ba0d999f261d76603</citedby><cites>FETCH-LOGICAL-c455t-c6f49d6644fc23ec1bb284b4402ef224ecfe4b09074bb6c5ba0d999f261d76603</cites><orcidid>0000-0001-8370-8837 ; 0000-0001-7532-5879 ; 0000-0002-8059-9871 ; 0000-0002-6495-5696 ; 0000-0003-3786-0912 ; 0000000264955696 ; 0000000175325879 ; 0000000183708837 ; 0000000337860912 ; 0000000280599871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5117162$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1773247$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, G. J.</creatorcontrib><creatorcontrib>Patankar, S.</creatorcontrib><creatorcontrib>Mariscal, D. A.</creatorcontrib><creatorcontrib>Tikhonchuk, V. T.</creatorcontrib><creatorcontrib>Bude, J. D.</creatorcontrib><creatorcontrib>Carr, C. W.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Norton, M. A.</creatorcontrib><creatorcontrib>Pollock, B. B.</creatorcontrib><creatorcontrib>Rubenchik, A. M.</creatorcontrib><creatorcontrib>Swadling, G. F.</creatorcontrib><creatorcontrib>Tubman, E. R.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Laser intensity scaling of the magnetic field from a laser-driven coil target</title><title>Journal of applied physics</title><description>We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as
B
∝
I
laser
0.66
±
0.13. This scaling relation can be derived from the measured voltage approximated by the laser-heated plasma electron temperature
T
e. The experiments used a 1053 nm laser with pulse lengths ranging from 0.5 to 20 ns and intensities ranging from
10
9 to
10
14
W
/
cm
2 to generate an electric potential that drives current through the coil. We show that the behavior of the coil can be described with a lumped-element circuit model.</description><subject>Applied physics</subject><subject>Circuit theorems</subject><subject>Circuits</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Electrical measurement</subject><subject>Electrical properties and parameters</subject><subject>Electron energy</subject><subject>Electronic circuits</subject><subject>Electrons</subject><subject>Electrostatics</subject><subject>Field coils</subject><subject>Laser ablation</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Plasma diagnostics</subject><subject>Plasma diodes</subject><subject>Plasma properties and parameters</subject><subject>Thermodynamic properties</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcIulKYmmRymSxFvEHFja5DJpO0KdOkJmmhb--UKbh3dTbf-c_hB-AaoxlGvH7AM4axwJycgAlGjawEY-gUTBAiuGqkkOfgIucVQhg3tZyAj7nONkEfig3Zlz3MRvc-LGB0sCwtXOtFsMUb6LztO-hSXEMN-8NS1SW_swGa6HtYdFrYcgnOnO6zvTrOKfh-ef56eqvmn6_vT4_zylDGSmW4o7LjnFJnSG0NblvS0JZSRKwjhFrjLG2RRIK2LTes1aiTUjrCcSc4R_UU3Iy5MRevsvHFmqWJIVhTFBaiJlQM6HZEmxR_tjYXtYrbFIa_FKk5azBrajqou1GZFHNO1qlN8mud9gojdahUYXWsdLD3oz1c1MXH8D-8i-kPqk3n6l_TOINW</recordid><startdate>20200224</startdate><enddate>20200224</enddate><creator>Williams, G. J.</creator><creator>Patankar, S.</creator><creator>Mariscal, D. A.</creator><creator>Tikhonchuk, V. T.</creator><creator>Bude, J. D.</creator><creator>Carr, C. W.</creator><creator>Goyon, C.</creator><creator>Norton, M. A.</creator><creator>Pollock, B. B.</creator><creator>Rubenchik, A. M.</creator><creator>Swadling, G. F.</creator><creator>Tubman, E. R.</creator><creator>Moody, J. D.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8370-8837</orcidid><orcidid>https://orcid.org/0000-0001-7532-5879</orcidid><orcidid>https://orcid.org/0000-0002-8059-9871</orcidid><orcidid>https://orcid.org/0000-0002-6495-5696</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000000264955696</orcidid><orcidid>https://orcid.org/0000000175325879</orcidid><orcidid>https://orcid.org/0000000183708837</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000280599871</orcidid></search><sort><creationdate>20200224</creationdate><title>Laser intensity scaling of the magnetic field from a laser-driven coil target</title><author>Williams, G. J. ; Patankar, S. ; Mariscal, D. A. ; Tikhonchuk, V. T. ; Bude, J. D. ; Carr, C. W. ; Goyon, C. ; Norton, M. A. ; Pollock, B. B. ; Rubenchik, A. M. ; Swadling, G. F. ; Tubman, E. R. ; Moody, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-c6f49d6644fc23ec1bb284b4402ef224ecfe4b09074bb6c5ba0d999f261d76603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Circuit theorems</topic><topic>Circuits</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Electrical measurement</topic><topic>Electrical properties and parameters</topic><topic>Electron energy</topic><topic>Electronic circuits</topic><topic>Electrons</topic><topic>Electrostatics</topic><topic>Field coils</topic><topic>Laser ablation</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Plasma diagnostics</topic><topic>Plasma diodes</topic><topic>Plasma properties and parameters</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, G. J.</creatorcontrib><creatorcontrib>Patankar, S.</creatorcontrib><creatorcontrib>Mariscal, D. A.</creatorcontrib><creatorcontrib>Tikhonchuk, V. T.</creatorcontrib><creatorcontrib>Bude, J. D.</creatorcontrib><creatorcontrib>Carr, C. W.</creatorcontrib><creatorcontrib>Goyon, C.</creatorcontrib><creatorcontrib>Norton, M. A.</creatorcontrib><creatorcontrib>Pollock, B. B.</creatorcontrib><creatorcontrib>Rubenchik, A. M.</creatorcontrib><creatorcontrib>Swadling, G. F.</creatorcontrib><creatorcontrib>Tubman, E. R.</creatorcontrib><creatorcontrib>Moody, J. D.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, G. J.</au><au>Patankar, S.</au><au>Mariscal, D. A.</au><au>Tikhonchuk, V. T.</au><au>Bude, J. D.</au><au>Carr, C. W.</au><au>Goyon, C.</au><au>Norton, M. A.</au><au>Pollock, B. B.</au><au>Rubenchik, A. M.</au><au>Swadling, G. F.</au><au>Tubman, E. R.</au><au>Moody, J. D.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser intensity scaling of the magnetic field from a laser-driven coil target</atitle><jtitle>Journal of applied physics</jtitle><date>2020-02-24</date><risdate>2020</risdate><volume>127</volume><issue>8</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We report on the first direct voltage and current measurements from a laser-generated magnetic field coil target. The magnetic field was observed to scale with the laser intensity as
B
∝
I
laser
0.66
±
0.13. This scaling relation can be derived from the measured voltage approximated by the laser-heated plasma electron temperature
T
e. The experiments used a 1053 nm laser with pulse lengths ranging from 0.5 to 20 ns and intensities ranging from
10
9 to
10
14
W
/
cm
2 to generate an electric potential that drives current through the coil. We show that the behavior of the coil can be described with a lumped-element circuit model.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5117162</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8370-8837</orcidid><orcidid>https://orcid.org/0000-0001-7532-5879</orcidid><orcidid>https://orcid.org/0000-0002-8059-9871</orcidid><orcidid>https://orcid.org/0000-0002-6495-5696</orcidid><orcidid>https://orcid.org/0000-0003-3786-0912</orcidid><orcidid>https://orcid.org/0000000264955696</orcidid><orcidid>https://orcid.org/0000000175325879</orcidid><orcidid>https://orcid.org/0000000183708837</orcidid><orcidid>https://orcid.org/0000000337860912</orcidid><orcidid>https://orcid.org/0000000280599871</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-02, Vol.127 (8) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5117162 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Circuit theorems Circuits CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Electrical measurement Electrical properties and parameters Electron energy Electronic circuits Electrons Electrostatics Field coils Laser ablation Laser beam heating Lasers Magnetic fields Plasma diagnostics Plasma diodes Plasma properties and parameters Thermodynamic properties |
title | Laser intensity scaling of the magnetic field from a laser-driven coil target |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20intensity%20scaling%20of%20the%20magnetic%20field%20from%20a%20laser-driven%20coil%20target&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Williams,%20G.%20J.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-02-24&rft.volume=127&rft.issue=8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5117162&rft_dat=%3Cproquest_cross%3E2365815834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365815834&rft_id=info:pmid/&rfr_iscdi=true |