Characterization of the fast ionization wave induced by a CO2 laser pulse in argon
Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonatio...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019-12, Vol.126 (24) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 126 |
creator | Shimamura, Kohei Yokota, Ippei Yokota, Shigeru |
description | Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5 J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7 eV and an electron number density of 2.5 × 1023 m−3. At the FIW–LSDW transition, the electron temperature increased by 1 eV, and the density decreased by 2.2 × 1023 m−3. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments. |
doi_str_mv | 10.1063/1.5115815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5115815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329984509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-d53978723ececd92956a5bb26d368cf3b99de642b174ee0534cbdf4b167a5ce63</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcPfoOATwqd-dOkyaMUp8JgIPoc0iR1HbOpSTqZn97OTX0QfLrcc3-cyzkAnGM0wYjTazxhGDOB2QEYYSRkVjCGDsEIIYIzIQt5DE5iXCKEsaByBB7LhQ7aJBeaD50a30Jfw7RwsNYxwWH_lt_12sGmtb1xFlYbqGE5J3Clowuw61dxe4Q6vPj2FBzVehDO9nMMnqe3T-V9NpvfPZQ3s8zkiKfMMioLURDqjDNWEsm4ZlVFuKVcmJpWUlrHc1LhIncOMZqbytZ5hXmhmXGcjsHFzrcL_q13Maml70M7vFSEEilFzpAcqMsdZYKPMbhadaF51WGjMFLbyhRW-8oG9mrHRtOkr9g_8NqHX1B1tv4P_uv8CTSDeWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329984509</pqid></control><display><type>article</type><title>Characterization of the fast ionization wave induced by a CO2 laser pulse in argon</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shimamura, Kohei ; Yokota, Ippei ; Yokota, Shigeru</creator><creatorcontrib>Shimamura, Kohei ; Yokota, Ippei ; Yokota, Shigeru</creatorcontrib><description>Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5 J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7 eV and an electron number density of 2.5 × 1023 m−3. At the FIW–LSDW transition, the electron temperature increased by 1 eV, and the density decreased by 2.2 × 1023 m−3. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5115815</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption ; Applied physics ; Argon ; Carbon dioxide ; Carbon dioxide lasers ; CCD cameras ; Density ; Detonation waves ; Electron energy ; Emission analysis ; Ionization waves ; Laser plasmas ; Lasers ; Optical emission spectroscopy ; Plasma ; Plasma temperature ; Propagation velocity ; Solid state lasers ; Thermodynamic equilibrium ; Wave propagation</subject><ispartof>Journal of applied physics, 2019-12, Vol.126 (24)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-d53978723ececd92956a5bb26d368cf3b99de642b174ee0534cbdf4b167a5ce63</citedby><cites>FETCH-LOGICAL-c406t-d53978723ececd92956a5bb26d368cf3b99de642b174ee0534cbdf4b167a5ce63</cites><orcidid>0000-0002-7589-1720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5115815$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Shimamura, Kohei</creatorcontrib><creatorcontrib>Yokota, Ippei</creatorcontrib><creatorcontrib>Yokota, Shigeru</creatorcontrib><title>Characterization of the fast ionization wave induced by a CO2 laser pulse in argon</title><title>Journal of applied physics</title><description>Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5 J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7 eV and an electron number density of 2.5 × 1023 m−3. At the FIW–LSDW transition, the electron temperature increased by 1 eV, and the density decreased by 2.2 × 1023 m−3. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments.</description><subject>Absorption</subject><subject>Applied physics</subject><subject>Argon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>CCD cameras</subject><subject>Density</subject><subject>Detonation waves</subject><subject>Electron energy</subject><subject>Emission analysis</subject><subject>Ionization waves</subject><subject>Laser plasmas</subject><subject>Lasers</subject><subject>Optical emission spectroscopy</subject><subject>Plasma</subject><subject>Plasma temperature</subject><subject>Propagation velocity</subject><subject>Solid state lasers</subject><subject>Thermodynamic equilibrium</subject><subject>Wave propagation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcPfoOATwqd-dOkyaMUp8JgIPoc0iR1HbOpSTqZn97OTX0QfLrcc3-cyzkAnGM0wYjTazxhGDOB2QEYYSRkVjCGDsEIIYIzIQt5DE5iXCKEsaByBB7LhQ7aJBeaD50a30Jfw7RwsNYxwWH_lt_12sGmtb1xFlYbqGE5J3Clowuw61dxe4Q6vPj2FBzVehDO9nMMnqe3T-V9NpvfPZQ3s8zkiKfMMioLURDqjDNWEsm4ZlVFuKVcmJpWUlrHc1LhIncOMZqbytZ5hXmhmXGcjsHFzrcL_q13Maml70M7vFSEEilFzpAcqMsdZYKPMbhadaF51WGjMFLbyhRW-8oG9mrHRtOkr9g_8NqHX1B1tv4P_uv8CTSDeWA</recordid><startdate>20191228</startdate><enddate>20191228</enddate><creator>Shimamura, Kohei</creator><creator>Yokota, Ippei</creator><creator>Yokota, Shigeru</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7589-1720</orcidid></search><sort><creationdate>20191228</creationdate><title>Characterization of the fast ionization wave induced by a CO2 laser pulse in argon</title><author>Shimamura, Kohei ; Yokota, Ippei ; Yokota, Shigeru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-d53978723ececd92956a5bb26d368cf3b99de642b174ee0534cbdf4b167a5ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Applied physics</topic><topic>Argon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>CCD cameras</topic><topic>Density</topic><topic>Detonation waves</topic><topic>Electron energy</topic><topic>Emission analysis</topic><topic>Ionization waves</topic><topic>Laser plasmas</topic><topic>Lasers</topic><topic>Optical emission spectroscopy</topic><topic>Plasma</topic><topic>Plasma temperature</topic><topic>Propagation velocity</topic><topic>Solid state lasers</topic><topic>Thermodynamic equilibrium</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimamura, Kohei</creatorcontrib><creatorcontrib>Yokota, Ippei</creatorcontrib><creatorcontrib>Yokota, Shigeru</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimamura, Kohei</au><au>Yokota, Ippei</au><au>Yokota, Shigeru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the fast ionization wave induced by a CO2 laser pulse in argon</atitle><jtitle>Journal of applied physics</jtitle><date>2019-12-28</date><risdate>2019</risdate><volume>126</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5 J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7 eV and an electron number density of 2.5 × 1023 m−3. At the FIW–LSDW transition, the electron temperature increased by 1 eV, and the density decreased by 2.2 × 1023 m−3. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5115815</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7589-1720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2019-12, Vol.126 (24) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5115815 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorption Applied physics Argon Carbon dioxide Carbon dioxide lasers CCD cameras Density Detonation waves Electron energy Emission analysis Ionization waves Laser plasmas Lasers Optical emission spectroscopy Plasma Plasma temperature Propagation velocity Solid state lasers Thermodynamic equilibrium Wave propagation |
title | Characterization of the fast ionization wave induced by a CO2 laser pulse in argon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20fast%20ionization%20wave%20induced%20by%20a%20CO2%20laser%20pulse%20in%20argon&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Shimamura,%20Kohei&rft.date=2019-12-28&rft.volume=126&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5115815&rft_dat=%3Cproquest_cross%3E2329984509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329984509&rft_id=info:pmid/&rfr_iscdi=true |