Characterization of the fast ionization wave induced by a CO2 laser pulse in argon

Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-12, Vol.126 (24)
Hauptverfasser: Shimamura, Kohei, Yokota, Ippei, Yokota, Shigeru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 126
creator Shimamura, Kohei
Yokota, Ippei
Yokota, Shigeru
description Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5 J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7 eV and an electron number density of 2.5 × 1023 m−3. At the FIW–LSDW transition, the electron temperature increased by 1 eV, and the density decreased by 2.2 × 1023 m−3. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments.
doi_str_mv 10.1063/1.5115815
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5115815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329984509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-d53978723ececd92956a5bb26d368cf3b99de642b174ee0534cbdf4b167a5ce63</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcPfoOATwqd-dOkyaMUp8JgIPoc0iR1HbOpSTqZn97OTX0QfLrcc3-cyzkAnGM0wYjTazxhGDOB2QEYYSRkVjCGDsEIIYIzIQt5DE5iXCKEsaByBB7LhQ7aJBeaD50a30Jfw7RwsNYxwWH_lt_12sGmtb1xFlYbqGE5J3Clowuw61dxe4Q6vPj2FBzVehDO9nMMnqe3T-V9NpvfPZQ3s8zkiKfMMioLURDqjDNWEsm4ZlVFuKVcmJpWUlrHc1LhIncOMZqbytZ5hXmhmXGcjsHFzrcL_q13Maml70M7vFSEEilFzpAcqMsdZYKPMbhadaF51WGjMFLbyhRW-8oG9mrHRtOkr9g_8NqHX1B1tv4P_uv8CTSDeWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329984509</pqid></control><display><type>article</type><title>Characterization of the fast ionization wave induced by a CO2 laser pulse in argon</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shimamura, Kohei ; Yokota, Ippei ; Yokota, Shigeru</creator><creatorcontrib>Shimamura, Kohei ; Yokota, Ippei ; Yokota, Shigeru</creatorcontrib><description>Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5 J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7 eV and an electron number density of 2.5 × 1023 m−3. At the FIW–LSDW transition, the electron temperature increased by 1 eV, and the density decreased by 2.2 × 1023 m−3. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5115815</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption ; Applied physics ; Argon ; Carbon dioxide ; Carbon dioxide lasers ; CCD cameras ; Density ; Detonation waves ; Electron energy ; Emission analysis ; Ionization waves ; Laser plasmas ; Lasers ; Optical emission spectroscopy ; Plasma ; Plasma temperature ; Propagation velocity ; Solid state lasers ; Thermodynamic equilibrium ; Wave propagation</subject><ispartof>Journal of applied physics, 2019-12, Vol.126 (24)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-d53978723ececd92956a5bb26d368cf3b99de642b174ee0534cbdf4b167a5ce63</citedby><cites>FETCH-LOGICAL-c406t-d53978723ececd92956a5bb26d368cf3b99de642b174ee0534cbdf4b167a5ce63</cites><orcidid>0000-0002-7589-1720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5115815$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Shimamura, Kohei</creatorcontrib><creatorcontrib>Yokota, Ippei</creatorcontrib><creatorcontrib>Yokota, Shigeru</creatorcontrib><title>Characterization of the fast ionization wave induced by a CO2 laser pulse in argon</title><title>Journal of applied physics</title><description>Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5 J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7 eV and an electron number density of 2.5 × 1023 m−3. At the FIW–LSDW transition, the electron temperature increased by 1 eV, and the density decreased by 2.2 × 1023 m−3. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments.</description><subject>Absorption</subject><subject>Applied physics</subject><subject>Argon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>CCD cameras</subject><subject>Density</subject><subject>Detonation waves</subject><subject>Electron energy</subject><subject>Emission analysis</subject><subject>Ionization waves</subject><subject>Laser plasmas</subject><subject>Lasers</subject><subject>Optical emission spectroscopy</subject><subject>Plasma</subject><subject>Plasma temperature</subject><subject>Propagation velocity</subject><subject>Solid state lasers</subject><subject>Thermodynamic equilibrium</subject><subject>Wave propagation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcPfoOATwqd-dOkyaMUp8JgIPoc0iR1HbOpSTqZn97OTX0QfLrcc3-cyzkAnGM0wYjTazxhGDOB2QEYYSRkVjCGDsEIIYIzIQt5DE5iXCKEsaByBB7LhQ7aJBeaD50a30Jfw7RwsNYxwWH_lt_12sGmtb1xFlYbqGE5J3Clowuw61dxe4Q6vPj2FBzVehDO9nMMnqe3T-V9NpvfPZQ3s8zkiKfMMioLURDqjDNWEsm4ZlVFuKVcmJpWUlrHc1LhIncOMZqbytZ5hXmhmXGcjsHFzrcL_q13Maml70M7vFSEEilFzpAcqMsdZYKPMbhadaF51WGjMFLbyhRW-8oG9mrHRtOkr9g_8NqHX1B1tv4P_uv8CTSDeWA</recordid><startdate>20191228</startdate><enddate>20191228</enddate><creator>Shimamura, Kohei</creator><creator>Yokota, Ippei</creator><creator>Yokota, Shigeru</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7589-1720</orcidid></search><sort><creationdate>20191228</creationdate><title>Characterization of the fast ionization wave induced by a CO2 laser pulse in argon</title><author>Shimamura, Kohei ; Yokota, Ippei ; Yokota, Shigeru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-d53978723ececd92956a5bb26d368cf3b99de642b174ee0534cbdf4b167a5ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Applied physics</topic><topic>Argon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>CCD cameras</topic><topic>Density</topic><topic>Detonation waves</topic><topic>Electron energy</topic><topic>Emission analysis</topic><topic>Ionization waves</topic><topic>Laser plasmas</topic><topic>Lasers</topic><topic>Optical emission spectroscopy</topic><topic>Plasma</topic><topic>Plasma temperature</topic><topic>Propagation velocity</topic><topic>Solid state lasers</topic><topic>Thermodynamic equilibrium</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimamura, Kohei</creatorcontrib><creatorcontrib>Yokota, Ippei</creatorcontrib><creatorcontrib>Yokota, Shigeru</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimamura, Kohei</au><au>Yokota, Ippei</au><au>Yokota, Shigeru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the fast ionization wave induced by a CO2 laser pulse in argon</atitle><jtitle>Journal of applied physics</jtitle><date>2019-12-28</date><risdate>2019</risdate><volume>126</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5 J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7 eV and an electron number density of 2.5 × 1023 m−3. At the FIW–LSDW transition, the electron temperature increased by 1 eV, and the density decreased by 2.2 × 1023 m−3. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5115815</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7589-1720</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-12, Vol.126 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_5115815
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorption
Applied physics
Argon
Carbon dioxide
Carbon dioxide lasers
CCD cameras
Density
Detonation waves
Electron energy
Emission analysis
Ionization waves
Laser plasmas
Lasers
Optical emission spectroscopy
Plasma
Plasma temperature
Propagation velocity
Solid state lasers
Thermodynamic equilibrium
Wave propagation
title Characterization of the fast ionization wave induced by a CO2 laser pulse in argon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20fast%20ionization%20wave%20induced%20by%20a%20CO2%20laser%20pulse%20in%20argon&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Shimamura,%20Kohei&rft.date=2019-12-28&rft.volume=126&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5115815&rft_dat=%3Cproquest_cross%3E2329984509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2329984509&rft_id=info:pmid/&rfr_iscdi=true