Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide

Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Physics Letters 2019-07, Vol.115 (4)
Hauptverfasser: Wolfowicz, Gary, Anderson, Christopher P., Whiteley, Samuel J., Awschalom, David D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Applied Physics Letters
container_volume 115
creator Wolfowicz, Gary
Anderson, Christopher P.
Whiteley, Samuel J.
Awschalom, David D.
description Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combination of heterodyne detection with charge-based electric field sensing, solving many of the previous limitations of this technique. Owing to the nonlinear response of the charge conversion to electric fields, the application of a separate “pump” electric field results in a detection sensitivity as low as 1.1 (V/cm)/Hz, with a near-diffraction limited spatial resolution and tunable control of the sensor dynamic range. In addition, we show both incoherent and coherent heterodyne detection, allowing measurements of either unknown random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-plane vector measurements of the electric field by combining orthogonal pump electric fields. Overall, this work establishes charge-based measurements as highly relevant for solid-state defect sensing.
doi_str_mv 10.1063/1.5108913
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5108913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263658772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-74e982b1b5f9f2d1b4a3b1c365a714fbbc9c69b1f80907cb3b38558ba827ccf93</originalsourceid><addsrcrecordid>eNqdkMFKxDAQhoMouK4efIOgJ4WumaRp2qMs6goLXvRqSNJEs9SmJl1h394sXfDuaWaYb2b--RG6BLIAUrE7WHAgdQPsCM2ACFEwgPoYzQghrKgaDqfoLKVNLjllbIbeV3a0MbS73uI2p2b0ocfB4ahaHwoX7ffW9maHbZd70RvsvO3ahLfJ9x94CL4f86DLzYR9j5PvvMkbjIrat_YcnTjVJXtxiHP09vjwulwV65en5-X9ujAl52MhStvUVIPmrnG0BV0qpsGwiisBpdPaNKZqNLiaNEQYzTSrOa-1qqkwxjVsjq6mvSGNXibj8yefWUefdUngXNBSZOh6goYY8ldplJuwjX3WJSmt8rFaCJqpm4kyMaQUrZND9F8q7iQQufdYgjx4nNnbid1fVHvr_gf_hPgHyqF17BeIX4qj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263658772</pqid></control><display><type>article</type><title>Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wolfowicz, Gary ; Anderson, Christopher P. ; Whiteley, Samuel J. ; Awschalom, David D.</creator><creatorcontrib>Wolfowicz, Gary ; Anderson, Christopher P. ; Whiteley, Samuel J. ; Awschalom, David D. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combination of heterodyne detection with charge-based electric field sensing, solving many of the previous limitations of this technique. Owing to the nonlinear response of the charge conversion to electric fields, the application of a separate “pump” electric field results in a detection sensitivity as low as 1.1 (V/cm)/Hz, with a near-diffraction limited spatial resolution and tunable control of the sensor dynamic range. In addition, we show both incoherent and coherent heterodyne detection, allowing measurements of either unknown random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-plane vector measurements of the electric field by combining orthogonal pump electric fields. Overall, this work establishes charge-based measurements as highly relevant for solid-state defect sensing.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5108913</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Conversion ; Detection ; Electric charge ; Electric fields ; Fields (mathematics) ; Nonlinear response ; Point defects ; Radio frequency ; Sensitivity ; Silicon carbide ; Spatial resolution</subject><ispartof>Applied Physics Letters, 2019-07, Vol.115 (4)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-74e982b1b5f9f2d1b4a3b1c365a714fbbc9c69b1f80907cb3b38558ba827ccf93</citedby><cites>FETCH-LOGICAL-c455t-74e982b1b5f9f2d1b4a3b1c365a714fbbc9c69b1f80907cb3b38558ba827ccf93</cites><orcidid>0000-0002-5624-0025 ; 0000-0003-3137-8869 ; 0000-0002-8591-2687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5108913$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1557247$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfowicz, Gary</creatorcontrib><creatorcontrib>Anderson, Christopher P.</creatorcontrib><creatorcontrib>Whiteley, Samuel J.</creatorcontrib><creatorcontrib>Awschalom, David D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide</title><title>Applied Physics Letters</title><description>Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combination of heterodyne detection with charge-based electric field sensing, solving many of the previous limitations of this technique. Owing to the nonlinear response of the charge conversion to electric fields, the application of a separate “pump” electric field results in a detection sensitivity as low as 1.1 (V/cm)/Hz, with a near-diffraction limited spatial resolution and tunable control of the sensor dynamic range. In addition, we show both incoherent and coherent heterodyne detection, allowing measurements of either unknown random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-plane vector measurements of the electric field by combining orthogonal pump electric fields. Overall, this work establishes charge-based measurements as highly relevant for solid-state defect sensing.</description><subject>Applied physics</subject><subject>Conversion</subject><subject>Detection</subject><subject>Electric charge</subject><subject>Electric fields</subject><subject>Fields (mathematics)</subject><subject>Nonlinear response</subject><subject>Point defects</subject><subject>Radio frequency</subject><subject>Sensitivity</subject><subject>Silicon carbide</subject><subject>Spatial resolution</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkMFKxDAQhoMouK4efIOgJ4WumaRp2qMs6goLXvRqSNJEs9SmJl1h394sXfDuaWaYb2b--RG6BLIAUrE7WHAgdQPsCM2ACFEwgPoYzQghrKgaDqfoLKVNLjllbIbeV3a0MbS73uI2p2b0ocfB4ahaHwoX7ffW9maHbZd70RvsvO3ahLfJ9x94CL4f86DLzYR9j5PvvMkbjIrat_YcnTjVJXtxiHP09vjwulwV65en5-X9ujAl52MhStvUVIPmrnG0BV0qpsGwiisBpdPaNKZqNLiaNEQYzTSrOa-1qqkwxjVsjq6mvSGNXibj8yefWUefdUngXNBSZOh6goYY8ldplJuwjX3WJSmt8rFaCJqpm4kyMaQUrZND9F8q7iQQufdYgjx4nNnbid1fVHvr_gf_hPgHyqF17BeIX4qj</recordid><startdate>20190722</startdate><enddate>20190722</enddate><creator>Wolfowicz, Gary</creator><creator>Anderson, Christopher P.</creator><creator>Whiteley, Samuel J.</creator><creator>Awschalom, David D.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5624-0025</orcidid><orcidid>https://orcid.org/0000-0003-3137-8869</orcidid><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid></search><sort><creationdate>20190722</creationdate><title>Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide</title><author>Wolfowicz, Gary ; Anderson, Christopher P. ; Whiteley, Samuel J. ; Awschalom, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-74e982b1b5f9f2d1b4a3b1c365a714fbbc9c69b1f80907cb3b38558ba827ccf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Conversion</topic><topic>Detection</topic><topic>Electric charge</topic><topic>Electric fields</topic><topic>Fields (mathematics)</topic><topic>Nonlinear response</topic><topic>Point defects</topic><topic>Radio frequency</topic><topic>Sensitivity</topic><topic>Silicon carbide</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfowicz, Gary</creatorcontrib><creatorcontrib>Anderson, Christopher P.</creatorcontrib><creatorcontrib>Whiteley, Samuel J.</creatorcontrib><creatorcontrib>Awschalom, David D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied Physics Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfowicz, Gary</au><au>Anderson, Christopher P.</au><au>Whiteley, Samuel J.</au><au>Awschalom, David D.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide</atitle><jtitle>Applied Physics Letters</jtitle><date>2019-07-22</date><risdate>2019</risdate><volume>115</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combination of heterodyne detection with charge-based electric field sensing, solving many of the previous limitations of this technique. Owing to the nonlinear response of the charge conversion to electric fields, the application of a separate “pump” electric field results in a detection sensitivity as low as 1.1 (V/cm)/Hz, with a near-diffraction limited spatial resolution and tunable control of the sensor dynamic range. In addition, we show both incoherent and coherent heterodyne detection, allowing measurements of either unknown random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-plane vector measurements of the electric field by combining orthogonal pump electric fields. Overall, this work establishes charge-based measurements as highly relevant for solid-state defect sensing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5108913</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5624-0025</orcidid><orcidid>https://orcid.org/0000-0003-3137-8869</orcidid><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied Physics Letters, 2019-07, Vol.115 (4)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_5108913
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Conversion
Detection
Electric charge
Electric fields
Fields (mathematics)
Nonlinear response
Point defects
Radio frequency
Sensitivity
Silicon carbide
Spatial resolution
title Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterodyne%20detection%20of%20radio-frequency%20electric%20fields%20using%20point%20defects%20in%20silicon%20carbide&rft.jtitle=Applied%20Physics%20Letters&rft.au=Wolfowicz,%20Gary&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-07-22&rft.volume=115&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5108913&rft_dat=%3Cproquest_osti_%3E2263658772%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263658772&rft_id=info:pmid/&rfr_iscdi=true