Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide
Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combin...
Gespeichert in:
Veröffentlicht in: | Applied Physics Letters 2019-07, Vol.115 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Applied Physics Letters |
container_volume | 115 |
creator | Wolfowicz, Gary Anderson, Christopher P. Whiteley, Samuel J. Awschalom, David D. |
description | Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combination of heterodyne detection with charge-based electric field sensing, solving many of the previous limitations of this technique. Owing to the nonlinear response of the charge conversion to electric fields, the application of a separate “pump” electric field results in a detection sensitivity as low as
1.1 (V/cm)/Hz, with a near-diffraction limited spatial resolution and tunable control of the sensor dynamic range. In addition, we show both incoherent and coherent heterodyne detection, allowing measurements of either unknown random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-plane vector measurements of the electric field by combining orthogonal pump electric fields. Overall, this work establishes charge-based measurements as highly relevant for solid-state defect sensing. |
doi_str_mv | 10.1063/1.5108913 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5108913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263658772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-74e982b1b5f9f2d1b4a3b1c365a714fbbc9c69b1f80907cb3b38558ba827ccf93</originalsourceid><addsrcrecordid>eNqdkMFKxDAQhoMouK4efIOgJ4WumaRp2qMs6goLXvRqSNJEs9SmJl1h394sXfDuaWaYb2b--RG6BLIAUrE7WHAgdQPsCM2ACFEwgPoYzQghrKgaDqfoLKVNLjllbIbeV3a0MbS73uI2p2b0ocfB4ahaHwoX7ffW9maHbZd70RvsvO3ahLfJ9x94CL4f86DLzYR9j5PvvMkbjIrat_YcnTjVJXtxiHP09vjwulwV65en5-X9ujAl52MhStvUVIPmrnG0BV0qpsGwiisBpdPaNKZqNLiaNEQYzTSrOa-1qqkwxjVsjq6mvSGNXibj8yefWUefdUngXNBSZOh6goYY8ldplJuwjX3WJSmt8rFaCJqpm4kyMaQUrZND9F8q7iQQufdYgjx4nNnbid1fVHvr_gf_hPgHyqF17BeIX4qj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263658772</pqid></control><display><type>article</type><title>Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wolfowicz, Gary ; Anderson, Christopher P. ; Whiteley, Samuel J. ; Awschalom, David D.</creator><creatorcontrib>Wolfowicz, Gary ; Anderson, Christopher P. ; Whiteley, Samuel J. ; Awschalom, David D. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combination of heterodyne detection with charge-based electric field sensing, solving many of the previous limitations of this technique. Owing to the nonlinear response of the charge conversion to electric fields, the application of a separate “pump” electric field results in a detection sensitivity as low as
1.1 (V/cm)/Hz, with a near-diffraction limited spatial resolution and tunable control of the sensor dynamic range. In addition, we show both incoherent and coherent heterodyne detection, allowing measurements of either unknown random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-plane vector measurements of the electric field by combining orthogonal pump electric fields. Overall, this work establishes charge-based measurements as highly relevant for solid-state defect sensing.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5108913</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Conversion ; Detection ; Electric charge ; Electric fields ; Fields (mathematics) ; Nonlinear response ; Point defects ; Radio frequency ; Sensitivity ; Silicon carbide ; Spatial resolution</subject><ispartof>Applied Physics Letters, 2019-07, Vol.115 (4)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-74e982b1b5f9f2d1b4a3b1c365a714fbbc9c69b1f80907cb3b38558ba827ccf93</citedby><cites>FETCH-LOGICAL-c455t-74e982b1b5f9f2d1b4a3b1c365a714fbbc9c69b1f80907cb3b38558ba827ccf93</cites><orcidid>0000-0002-5624-0025 ; 0000-0003-3137-8869 ; 0000-0002-8591-2687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5108913$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1557247$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfowicz, Gary</creatorcontrib><creatorcontrib>Anderson, Christopher P.</creatorcontrib><creatorcontrib>Whiteley, Samuel J.</creatorcontrib><creatorcontrib>Awschalom, David D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide</title><title>Applied Physics Letters</title><description>Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combination of heterodyne detection with charge-based electric field sensing, solving many of the previous limitations of this technique. Owing to the nonlinear response of the charge conversion to electric fields, the application of a separate “pump” electric field results in a detection sensitivity as low as
1.1 (V/cm)/Hz, with a near-diffraction limited spatial resolution and tunable control of the sensor dynamic range. In addition, we show both incoherent and coherent heterodyne detection, allowing measurements of either unknown random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-plane vector measurements of the electric field by combining orthogonal pump electric fields. Overall, this work establishes charge-based measurements as highly relevant for solid-state defect sensing.</description><subject>Applied physics</subject><subject>Conversion</subject><subject>Detection</subject><subject>Electric charge</subject><subject>Electric fields</subject><subject>Fields (mathematics)</subject><subject>Nonlinear response</subject><subject>Point defects</subject><subject>Radio frequency</subject><subject>Sensitivity</subject><subject>Silicon carbide</subject><subject>Spatial resolution</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkMFKxDAQhoMouK4efIOgJ4WumaRp2qMs6goLXvRqSNJEs9SmJl1h394sXfDuaWaYb2b--RG6BLIAUrE7WHAgdQPsCM2ACFEwgPoYzQghrKgaDqfoLKVNLjllbIbeV3a0MbS73uI2p2b0ocfB4ahaHwoX7ffW9maHbZd70RvsvO3ahLfJ9x94CL4f86DLzYR9j5PvvMkbjIrat_YcnTjVJXtxiHP09vjwulwV65en5-X9ujAl52MhStvUVIPmrnG0BV0qpsGwiisBpdPaNKZqNLiaNEQYzTSrOa-1qqkwxjVsjq6mvSGNXibj8yefWUefdUngXNBSZOh6goYY8ldplJuwjX3WJSmt8rFaCJqpm4kyMaQUrZND9F8q7iQQufdYgjx4nNnbid1fVHvr_gf_hPgHyqF17BeIX4qj</recordid><startdate>20190722</startdate><enddate>20190722</enddate><creator>Wolfowicz, Gary</creator><creator>Anderson, Christopher P.</creator><creator>Whiteley, Samuel J.</creator><creator>Awschalom, David D.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5624-0025</orcidid><orcidid>https://orcid.org/0000-0003-3137-8869</orcidid><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid></search><sort><creationdate>20190722</creationdate><title>Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide</title><author>Wolfowicz, Gary ; Anderson, Christopher P. ; Whiteley, Samuel J. ; Awschalom, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-74e982b1b5f9f2d1b4a3b1c365a714fbbc9c69b1f80907cb3b38558ba827ccf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Conversion</topic><topic>Detection</topic><topic>Electric charge</topic><topic>Electric fields</topic><topic>Fields (mathematics)</topic><topic>Nonlinear response</topic><topic>Point defects</topic><topic>Radio frequency</topic><topic>Sensitivity</topic><topic>Silicon carbide</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfowicz, Gary</creatorcontrib><creatorcontrib>Anderson, Christopher P.</creatorcontrib><creatorcontrib>Whiteley, Samuel J.</creatorcontrib><creatorcontrib>Awschalom, David D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied Physics Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfowicz, Gary</au><au>Anderson, Christopher P.</au><au>Whiteley, Samuel J.</au><au>Awschalom, David D.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide</atitle><jtitle>Applied Physics Letters</jtitle><date>2019-07-22</date><risdate>2019</risdate><volume>115</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combination of heterodyne detection with charge-based electric field sensing, solving many of the previous limitations of this technique. Owing to the nonlinear response of the charge conversion to electric fields, the application of a separate “pump” electric field results in a detection sensitivity as low as
1.1 (V/cm)/Hz, with a near-diffraction limited spatial resolution and tunable control of the sensor dynamic range. In addition, we show both incoherent and coherent heterodyne detection, allowing measurements of either unknown random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-plane vector measurements of the electric field by combining orthogonal pump electric fields. Overall, this work establishes charge-based measurements as highly relevant for solid-state defect sensing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5108913</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5624-0025</orcidid><orcidid>https://orcid.org/0000-0003-3137-8869</orcidid><orcidid>https://orcid.org/0000-0002-8591-2687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied Physics Letters, 2019-07, Vol.115 (4) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5108913 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Conversion Detection Electric charge Electric fields Fields (mathematics) Nonlinear response Point defects Radio frequency Sensitivity Silicon carbide Spatial resolution |
title | Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterodyne%20detection%20of%20radio-frequency%20electric%20fields%20using%20point%20defects%20in%20silicon%20carbide&rft.jtitle=Applied%20Physics%20Letters&rft.au=Wolfowicz,%20Gary&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-07-22&rft.volume=115&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5108913&rft_dat=%3Cproquest_osti_%3E2263658772%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263658772&rft_id=info:pmid/&rfr_iscdi=true |