Observation and mitigation of RF-plasma-induced damage to III-nitrides grown by molecular beam epitaxy

In this work, radio-frequency (RF) plasma-induced damage to III-nitride surfaces and bulk defects is observed and mitigated. It is shown that for InN films, the surface is more sensitive to plasma-induced damage than GaN films, as observed via atomic force microscopy and reflection high energy elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-07, Vol.126 (1)
Hauptverfasser: Clinton, Evan A., Vadiee, Ehsan, Tellekamp, M. Brooks, Doolittle, W. Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of applied physics
container_volume 126
creator Clinton, Evan A.
Vadiee, Ehsan
Tellekamp, M. Brooks
Doolittle, W. Alan
description In this work, radio-frequency (RF) plasma-induced damage to III-nitride surfaces and bulk defects is observed and mitigated. It is shown that for InN films, the surface is more sensitive to plasma-induced damage than GaN films, as observed via atomic force microscopy and reflection high energy electron diffraction. In order to isolate any possible plasma-induced damage, a growth window for InN is established, and temperature ranges are determined for other damaging effects which include roughening due to low adatom mobility, InN decomposition, and indium desorption. In situ plasma monitoring and optimization are accomplished with a combination of optical emission spectroscopy as well as a remote Langmuir probe. It is shown that by increasing the plasma nitrogen flow, the positive ion content increases; however, the ion acceleration potential reduces. Additionally, a reduced RF plasma power results in a reduction of atomic nitrogen species. These plasma species and energetic variations result in variations in the bulk unintentional background electron concentrations observed by room temperature Hall effect measurements of ∼1 μm thick InN films. By increasing the nitrogen flow from 2.5 to 7.5 sccm for a constant RF power of 350 W, the background electron concentration decreases by 74% from 1.36 × 1019 cm−3 to 3.54 × 1018 cm−3, while maintaining a smooth surface morphology. Additionally, photoluminescence spectra indicate optical emission energies shift from ∼0.81 to 0.71 eV (closer to the fundamental bandgap of InN) by limiting the damaging plasma species. Finally, conditions are presented to further minimize plasma-induced damage in III-nitride devices.
doi_str_mv 10.1063/1.5097557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5097557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250766585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c11b6a2d22988115e510e5668b6fab519448148ffec7a7410fadce7d8048060a3</originalsourceid><addsrcrecordid>eNp90EtLxDAQB_AgCq6Pg98g6EmhmmmbNj3K4qMgLIieQ5rHGmmbmqTqfnurFT0InmYGfswMf4SOgJwDKbILOKekKiktt9ACCKuSqSfbaEFICgmrymoX7YXwTAgAy6oFMqsmaP8qonU9Fr3CnY12PY_O4PvrZGhF6ERiezVKrbASnVhrHB2u6zrpbfRW6YDX3r31uNngzrVajq3wuNGiw3qwUbxvDtCOEW3Qh991Hz1eXz0sb5O71U29vLxLZMaqmEiAphCpStOKMQCqKRBNi4I1hRENhSrPGeTMGC1LUeZAjFBSl4qRnJGCiGwfHc97XYiWB2mjlk_S9b2WkQPNpojyCZ3MaPDuZdQh8mc3-n76i6cpJWVRUEYndTor6V0IXhs-eNsJv-FA-GfWHPh31pM9m-3nxa_wfvCr87-QD8r8h_9u_gAPKIwr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250766585</pqid></control><display><type>article</type><title>Observation and mitigation of RF-plasma-induced damage to III-nitrides grown by molecular beam epitaxy</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Clinton, Evan A. ; Vadiee, Ehsan ; Tellekamp, M. Brooks ; Doolittle, W. Alan</creator><creatorcontrib>Clinton, Evan A. ; Vadiee, Ehsan ; Tellekamp, M. Brooks ; Doolittle, W. Alan</creatorcontrib><description>In this work, radio-frequency (RF) plasma-induced damage to III-nitride surfaces and bulk defects is observed and mitigated. It is shown that for InN films, the surface is more sensitive to plasma-induced damage than GaN films, as observed via atomic force microscopy and reflection high energy electron diffraction. In order to isolate any possible plasma-induced damage, a growth window for InN is established, and temperature ranges are determined for other damaging effects which include roughening due to low adatom mobility, InN decomposition, and indium desorption. In situ plasma monitoring and optimization are accomplished with a combination of optical emission spectroscopy as well as a remote Langmuir probe. It is shown that by increasing the plasma nitrogen flow, the positive ion content increases; however, the ion acceleration potential reduces. Additionally, a reduced RF plasma power results in a reduction of atomic nitrogen species. These plasma species and energetic variations result in variations in the bulk unintentional background electron concentrations observed by room temperature Hall effect measurements of ∼1 μm thick InN films. By increasing the nitrogen flow from 2.5 to 7.5 sccm for a constant RF power of 350 W, the background electron concentration decreases by 74% from 1.36 × 1019 cm−3 to 3.54 × 1018 cm−3, while maintaining a smooth surface morphology. Additionally, photoluminescence spectra indicate optical emission energies shift from ∼0.81 to 0.71 eV (closer to the fundamental bandgap of InN) by limiting the damaging plasma species. Finally, conditions are presented to further minimize plasma-induced damage in III-nitride devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5097557</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acceleration ; Adatoms ; Applied physics ; Atomic force microscopy ; Damage ; Electron diffraction ; Emission spectra ; Epitaxial growth ; Force reflection ; Gallium nitrides ; Hall effect ; High energy electrons ; Indium nitride ; Molecular beam epitaxy ; Morphology ; Nitrogen ; Optical emission spectroscopy ; Optimization ; Photoluminescence ; Plasma ; Positive ions ; Radio frequency ; Roughening ; Spectrum analysis ; Thick films</subject><ispartof>Journal of applied physics, 2019-07, Vol.126 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-c11b6a2d22988115e510e5668b6fab519448148ffec7a7410fadce7d8048060a3</citedby><cites>FETCH-LOGICAL-c389t-c11b6a2d22988115e510e5668b6fab519448148ffec7a7410fadce7d8048060a3</cites><orcidid>0000-0002-8408-1949 ; 0000-0003-3535-1831 ; 0000-0002-1055-6788 ; 0000000284081949 ; 0000000210556788 ; 0000000335351831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5097557$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1530634$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Clinton, Evan A.</creatorcontrib><creatorcontrib>Vadiee, Ehsan</creatorcontrib><creatorcontrib>Tellekamp, M. Brooks</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><title>Observation and mitigation of RF-plasma-induced damage to III-nitrides grown by molecular beam epitaxy</title><title>Journal of applied physics</title><description>In this work, radio-frequency (RF) plasma-induced damage to III-nitride surfaces and bulk defects is observed and mitigated. It is shown that for InN films, the surface is more sensitive to plasma-induced damage than GaN films, as observed via atomic force microscopy and reflection high energy electron diffraction. In order to isolate any possible plasma-induced damage, a growth window for InN is established, and temperature ranges are determined for other damaging effects which include roughening due to low adatom mobility, InN decomposition, and indium desorption. In situ plasma monitoring and optimization are accomplished with a combination of optical emission spectroscopy as well as a remote Langmuir probe. It is shown that by increasing the plasma nitrogen flow, the positive ion content increases; however, the ion acceleration potential reduces. Additionally, a reduced RF plasma power results in a reduction of atomic nitrogen species. These plasma species and energetic variations result in variations in the bulk unintentional background electron concentrations observed by room temperature Hall effect measurements of ∼1 μm thick InN films. By increasing the nitrogen flow from 2.5 to 7.5 sccm for a constant RF power of 350 W, the background electron concentration decreases by 74% from 1.36 × 1019 cm−3 to 3.54 × 1018 cm−3, while maintaining a smooth surface morphology. Additionally, photoluminescence spectra indicate optical emission energies shift from ∼0.81 to 0.71 eV (closer to the fundamental bandgap of InN) by limiting the damaging plasma species. Finally, conditions are presented to further minimize plasma-induced damage in III-nitride devices.</description><subject>Acceleration</subject><subject>Adatoms</subject><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Damage</subject><subject>Electron diffraction</subject><subject>Emission spectra</subject><subject>Epitaxial growth</subject><subject>Force reflection</subject><subject>Gallium nitrides</subject><subject>Hall effect</subject><subject>High energy electrons</subject><subject>Indium nitride</subject><subject>Molecular beam epitaxy</subject><subject>Morphology</subject><subject>Nitrogen</subject><subject>Optical emission spectroscopy</subject><subject>Optimization</subject><subject>Photoluminescence</subject><subject>Plasma</subject><subject>Positive ions</subject><subject>Radio frequency</subject><subject>Roughening</subject><subject>Spectrum analysis</subject><subject>Thick films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAQB_AgCq6Pg98g6EmhmmmbNj3K4qMgLIieQ5rHGmmbmqTqfnurFT0InmYGfswMf4SOgJwDKbILOKekKiktt9ACCKuSqSfbaEFICgmrymoX7YXwTAgAy6oFMqsmaP8qonU9Fr3CnY12PY_O4PvrZGhF6ERiezVKrbASnVhrHB2u6zrpbfRW6YDX3r31uNngzrVajq3wuNGiw3qwUbxvDtCOEW3Qh991Hz1eXz0sb5O71U29vLxLZMaqmEiAphCpStOKMQCqKRBNi4I1hRENhSrPGeTMGC1LUeZAjFBSl4qRnJGCiGwfHc97XYiWB2mjlk_S9b2WkQPNpojyCZ3MaPDuZdQh8mc3-n76i6cpJWVRUEYndTor6V0IXhs-eNsJv-FA-GfWHPh31pM9m-3nxa_wfvCr87-QD8r8h_9u_gAPKIwr</recordid><startdate>20190707</startdate><enddate>20190707</enddate><creator>Clinton, Evan A.</creator><creator>Vadiee, Ehsan</creator><creator>Tellekamp, M. Brooks</creator><creator>Doolittle, W. Alan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8408-1949</orcidid><orcidid>https://orcid.org/0000-0003-3535-1831</orcidid><orcidid>https://orcid.org/0000-0002-1055-6788</orcidid><orcidid>https://orcid.org/0000000284081949</orcidid><orcidid>https://orcid.org/0000000210556788</orcidid><orcidid>https://orcid.org/0000000335351831</orcidid></search><sort><creationdate>20190707</creationdate><title>Observation and mitigation of RF-plasma-induced damage to III-nitrides grown by molecular beam epitaxy</title><author>Clinton, Evan A. ; Vadiee, Ehsan ; Tellekamp, M. Brooks ; Doolittle, W. Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c11b6a2d22988115e510e5668b6fab519448148ffec7a7410fadce7d8048060a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Adatoms</topic><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Damage</topic><topic>Electron diffraction</topic><topic>Emission spectra</topic><topic>Epitaxial growth</topic><topic>Force reflection</topic><topic>Gallium nitrides</topic><topic>Hall effect</topic><topic>High energy electrons</topic><topic>Indium nitride</topic><topic>Molecular beam epitaxy</topic><topic>Morphology</topic><topic>Nitrogen</topic><topic>Optical emission spectroscopy</topic><topic>Optimization</topic><topic>Photoluminescence</topic><topic>Plasma</topic><topic>Positive ions</topic><topic>Radio frequency</topic><topic>Roughening</topic><topic>Spectrum analysis</topic><topic>Thick films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clinton, Evan A.</creatorcontrib><creatorcontrib>Vadiee, Ehsan</creatorcontrib><creatorcontrib>Tellekamp, M. Brooks</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clinton, Evan A.</au><au>Vadiee, Ehsan</au><au>Tellekamp, M. Brooks</au><au>Doolittle, W. Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation and mitigation of RF-plasma-induced damage to III-nitrides grown by molecular beam epitaxy</atitle><jtitle>Journal of applied physics</jtitle><date>2019-07-07</date><risdate>2019</risdate><volume>126</volume><issue>1</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this work, radio-frequency (RF) plasma-induced damage to III-nitride surfaces and bulk defects is observed and mitigated. It is shown that for InN films, the surface is more sensitive to plasma-induced damage than GaN films, as observed via atomic force microscopy and reflection high energy electron diffraction. In order to isolate any possible plasma-induced damage, a growth window for InN is established, and temperature ranges are determined for other damaging effects which include roughening due to low adatom mobility, InN decomposition, and indium desorption. In situ plasma monitoring and optimization are accomplished with a combination of optical emission spectroscopy as well as a remote Langmuir probe. It is shown that by increasing the plasma nitrogen flow, the positive ion content increases; however, the ion acceleration potential reduces. Additionally, a reduced RF plasma power results in a reduction of atomic nitrogen species. These plasma species and energetic variations result in variations in the bulk unintentional background electron concentrations observed by room temperature Hall effect measurements of ∼1 μm thick InN films. By increasing the nitrogen flow from 2.5 to 7.5 sccm for a constant RF power of 350 W, the background electron concentration decreases by 74% from 1.36 × 1019 cm−3 to 3.54 × 1018 cm−3, while maintaining a smooth surface morphology. Additionally, photoluminescence spectra indicate optical emission energies shift from ∼0.81 to 0.71 eV (closer to the fundamental bandgap of InN) by limiting the damaging plasma species. Finally, conditions are presented to further minimize plasma-induced damage in III-nitride devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5097557</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8408-1949</orcidid><orcidid>https://orcid.org/0000-0003-3535-1831</orcidid><orcidid>https://orcid.org/0000-0002-1055-6788</orcidid><orcidid>https://orcid.org/0000000284081949</orcidid><orcidid>https://orcid.org/0000000210556788</orcidid><orcidid>https://orcid.org/0000000335351831</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-07, Vol.126 (1)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_5097557
source AIP Journals Complete; Alma/SFX Local Collection
subjects Acceleration
Adatoms
Applied physics
Atomic force microscopy
Damage
Electron diffraction
Emission spectra
Epitaxial growth
Force reflection
Gallium nitrides
Hall effect
High energy electrons
Indium nitride
Molecular beam epitaxy
Morphology
Nitrogen
Optical emission spectroscopy
Optimization
Photoluminescence
Plasma
Positive ions
Radio frequency
Roughening
Spectrum analysis
Thick films
title Observation and mitigation of RF-plasma-induced damage to III-nitrides grown by molecular beam epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20and%20mitigation%20of%20RF-plasma-induced%20damage%20to%20III-nitrides%20grown%20by%20molecular%20beam%20epitaxy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Clinton,%20Evan%20A.&rft.date=2019-07-07&rft.volume=126&rft.issue=1&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5097557&rft_dat=%3Cproquest_cross%3E2250766585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250766585&rft_id=info:pmid/&rfr_iscdi=true