Spectroscopic study of CO2 and CO2–N2 mixture plasma using dielectric barrier discharge

Nowadays, increasing concentration of CO2 in the atmosphere is a major threat for the environment and is a main reason for global warming. Variation in gas temperature and dissociation of CO2 into its by-products (CO and O) in a home-made dielectric barrier discharge (DBD) reactor have been reported...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2019-08, Vol.9 (8), p.085015-085015-9
Hauptverfasser: Khan, M. I., Rehman, N. U., Khan, Shabraz, Ullah, Naqib, Masood, Asad, Ullah, Aman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 085015-9
container_issue 8
container_start_page 085015
container_title AIP advances
container_volume 9
creator Khan, M. I.
Rehman, N. U.
Khan, Shabraz
Ullah, Naqib
Masood, Asad
Ullah, Aman
description Nowadays, increasing concentration of CO2 in the atmosphere is a major threat for the environment and is a main reason for global warming. Variation in gas temperature and dissociation of CO2 into its by-products (CO and O) in a home-made dielectric barrier discharge (DBD) reactor have been reported as a function of discharge parameters, i.e., applied voltage and gas flow rate. To estimate the dissociation fraction of CO2 in the DBD reactor, the optical emission actinometry technique is employed in which 5% N2 is used as an actinometer. Emission lines of the Angstrom band of CO at 451.09 nm (B1∑  +v′=0−A1π, v″=0) and the 2nd positive system of N2 at 337.01 nm (C3πuv′=0−B3πg,v″=0) are used for actinometry measurements. To estimate the rate coefficients used in actinometry measurements, gas temperature is measured using the Boltzmann plot technique, from the rotational spectra of the Q-branch of the Angstrom band CO (0–1). To avoid discrepancy in gas temperature measurements, rotational temperature of the 2nd positive system, the N2 (0–1) band, is also measured. For this, synthetic spectra have been fitted over the experimentally recorded spectrum of the N2 (0–1) band. A slight difference in gas temperature has been noted for the Angstrom band of CO and the 2nd positive system of nitrogen. Conversely, an increasing trend in the dissociation fraction of CO2 with an increase in the applied voltage is noted. About 34% dissociation fraction is achieved for 10 kV applied voltage at a flow rate of 25 SCCM. With an increase in the gas flow rate (25–200 SCCM), a decrease in the dissociation fraction of CO2 from 34% to 11% is noted.
doi_str_mv 10.1063/1.5096399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5096399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_026bee138cf34761a1564682a9f06ba6</doaj_id><sourcerecordid>2274061998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3439-aaf422e073cb60f2d0727a7bcaafda8f570c5f08e9f44900046117ac53627ddd3</originalsourceid><addsrcrecordid>eNp9kc1KAzEQxxdRsKgH32DBk0I1X5tsjlL8AtGDevAUZvNRU9pmTXbF3nwH39AnMbVSBcG5zDDzm_8MM0Wxj9ExRpye4OMKSU6l3CgGBFf1kBLCN3_F28VeShOUjUmMajYoHu9aq7sYkg6t12XqerMogytHt6SEuVn6j7f3G1LO_GvXR1u2U0gzKPvk5-PSeDtdtufOBmL0NuZU0k8Qx3a32HIwTXbv2-8UD-dn96PL4fXtxdXo9HqoKaNyCOAYIRYJqhuOHDFIEAGi0blgoHaVQLpyqLbSMSaXm3OMBeiKciKMMXSnuFrpmgAT1UY_g7hQAbz6SoQ4VhA7r6dWIcIbazGttaNMcAy44ozXBKRDvAGetQ5WWm0Mz71NnZqEPs7z-ooQwRDHUtaZOlxROt8tRevWUzFSy0corL4fkdmjFZu076DzYb6GX0L8AVVr3H_wX-VPZViViQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2274061998</pqid></control><display><type>article</type><title>Spectroscopic study of CO2 and CO2–N2 mixture plasma using dielectric barrier discharge</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Khan, M. I. ; Rehman, N. U. ; Khan, Shabraz ; Ullah, Naqib ; Masood, Asad ; Ullah, Aman</creator><creatorcontrib>Khan, M. I. ; Rehman, N. U. ; Khan, Shabraz ; Ullah, Naqib ; Masood, Asad ; Ullah, Aman</creatorcontrib><description>Nowadays, increasing concentration of CO2 in the atmosphere is a major threat for the environment and is a main reason for global warming. Variation in gas temperature and dissociation of CO2 into its by-products (CO and O) in a home-made dielectric barrier discharge (DBD) reactor have been reported as a function of discharge parameters, i.e., applied voltage and gas flow rate. To estimate the dissociation fraction of CO2 in the DBD reactor, the optical emission actinometry technique is employed in which 5% N2 is used as an actinometer. Emission lines of the Angstrom band of CO at 451.09 nm (B1∑  +v′=0−A1π, v″=0) and the 2nd positive system of N2 at 337.01 nm (C3πuv′=0−B3πg,v″=0) are used for actinometry measurements. To estimate the rate coefficients used in actinometry measurements, gas temperature is measured using the Boltzmann plot technique, from the rotational spectra of the Q-branch of the Angstrom band CO (0–1). To avoid discrepancy in gas temperature measurements, rotational temperature of the 2nd positive system, the N2 (0–1) band, is also measured. For this, synthetic spectra have been fitted over the experimentally recorded spectrum of the N2 (0–1) band. A slight difference in gas temperature has been noted for the Angstrom band of CO and the 2nd positive system of nitrogen. Conversely, an increasing trend in the dissociation fraction of CO2 with an increase in the applied voltage is noted. About 34% dissociation fraction is achieved for 10 kV applied voltage at a flow rate of 25 SCCM. With an increase in the gas flow rate (25–200 SCCM), a decrease in the dissociation fraction of CO2 from 34% to 11% is noted.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5096399</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actinometry ; Carbon dioxide ; Carbon monoxide ; Dielectric barrier discharge ; Electric potential ; Flow velocity ; Gas flow ; Gas temperature ; Nitrogen plasma ; Plasma ; Rotational spectra ; Voltage</subject><ispartof>AIP advances, 2019-08, Vol.9 (8), p.085015-085015-9</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3439-aaf422e073cb60f2d0727a7bcaafda8f570c5f08e9f44900046117ac53627ddd3</citedby><cites>FETCH-LOGICAL-c3439-aaf422e073cb60f2d0727a7bcaafda8f570c5f08e9f44900046117ac53627ddd3</cites><orcidid>0000-0002-2207-7848 ; 0000-0001-6062-5836 ; 0000-0002-5734-3667 ; 0000-0002-7911-2587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,2098,27907,27908</link.rule.ids></links><search><creatorcontrib>Khan, M. I.</creatorcontrib><creatorcontrib>Rehman, N. U.</creatorcontrib><creatorcontrib>Khan, Shabraz</creatorcontrib><creatorcontrib>Ullah, Naqib</creatorcontrib><creatorcontrib>Masood, Asad</creatorcontrib><creatorcontrib>Ullah, Aman</creatorcontrib><title>Spectroscopic study of CO2 and CO2–N2 mixture plasma using dielectric barrier discharge</title><title>AIP advances</title><description>Nowadays, increasing concentration of CO2 in the atmosphere is a major threat for the environment and is a main reason for global warming. Variation in gas temperature and dissociation of CO2 into its by-products (CO and O) in a home-made dielectric barrier discharge (DBD) reactor have been reported as a function of discharge parameters, i.e., applied voltage and gas flow rate. To estimate the dissociation fraction of CO2 in the DBD reactor, the optical emission actinometry technique is employed in which 5% N2 is used as an actinometer. Emission lines of the Angstrom band of CO at 451.09 nm (B1∑  +v′=0−A1π, v″=0) and the 2nd positive system of N2 at 337.01 nm (C3πuv′=0−B3πg,v″=0) are used for actinometry measurements. To estimate the rate coefficients used in actinometry measurements, gas temperature is measured using the Boltzmann plot technique, from the rotational spectra of the Q-branch of the Angstrom band CO (0–1). To avoid discrepancy in gas temperature measurements, rotational temperature of the 2nd positive system, the N2 (0–1) band, is also measured. For this, synthetic spectra have been fitted over the experimentally recorded spectrum of the N2 (0–1) band. A slight difference in gas temperature has been noted for the Angstrom band of CO and the 2nd positive system of nitrogen. Conversely, an increasing trend in the dissociation fraction of CO2 with an increase in the applied voltage is noted. About 34% dissociation fraction is achieved for 10 kV applied voltage at a flow rate of 25 SCCM. With an increase in the gas flow rate (25–200 SCCM), a decrease in the dissociation fraction of CO2 from 34% to 11% is noted.</description><subject>Actinometry</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Dielectric barrier discharge</subject><subject>Electric potential</subject><subject>Flow velocity</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Nitrogen plasma</subject><subject>Plasma</subject><subject>Rotational spectra</subject><subject>Voltage</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1KAzEQxxdRsKgH32DBk0I1X5tsjlL8AtGDevAUZvNRU9pmTXbF3nwH39AnMbVSBcG5zDDzm_8MM0Wxj9ExRpye4OMKSU6l3CgGBFf1kBLCN3_F28VeShOUjUmMajYoHu9aq7sYkg6t12XqerMogytHt6SEuVn6j7f3G1LO_GvXR1u2U0gzKPvk5-PSeDtdtufOBmL0NuZU0k8Qx3a32HIwTXbv2-8UD-dn96PL4fXtxdXo9HqoKaNyCOAYIRYJqhuOHDFIEAGi0blgoHaVQLpyqLbSMSaXm3OMBeiKciKMMXSnuFrpmgAT1UY_g7hQAbz6SoQ4VhA7r6dWIcIbazGttaNMcAy44ozXBKRDvAGetQ5WWm0Mz71NnZqEPs7z-ooQwRDHUtaZOlxROt8tRevWUzFSy0corL4fkdmjFZu076DzYb6GX0L8AVVr3H_wX-VPZViViQ</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Khan, M. I.</creator><creator>Rehman, N. U.</creator><creator>Khan, Shabraz</creator><creator>Ullah, Naqib</creator><creator>Masood, Asad</creator><creator>Ullah, Aman</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2207-7848</orcidid><orcidid>https://orcid.org/0000-0001-6062-5836</orcidid><orcidid>https://orcid.org/0000-0002-5734-3667</orcidid><orcidid>https://orcid.org/0000-0002-7911-2587</orcidid></search><sort><creationdate>201908</creationdate><title>Spectroscopic study of CO2 and CO2–N2 mixture plasma using dielectric barrier discharge</title><author>Khan, M. I. ; Rehman, N. U. ; Khan, Shabraz ; Ullah, Naqib ; Masood, Asad ; Ullah, Aman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3439-aaf422e073cb60f2d0727a7bcaafda8f570c5f08e9f44900046117ac53627ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actinometry</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Dielectric barrier discharge</topic><topic>Electric potential</topic><topic>Flow velocity</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Nitrogen plasma</topic><topic>Plasma</topic><topic>Rotational spectra</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, M. I.</creatorcontrib><creatorcontrib>Rehman, N. U.</creatorcontrib><creatorcontrib>Khan, Shabraz</creatorcontrib><creatorcontrib>Ullah, Naqib</creatorcontrib><creatorcontrib>Masood, Asad</creatorcontrib><creatorcontrib>Ullah, Aman</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, M. I.</au><au>Rehman, N. U.</au><au>Khan, Shabraz</au><au>Ullah, Naqib</au><au>Masood, Asad</au><au>Ullah, Aman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic study of CO2 and CO2–N2 mixture plasma using dielectric barrier discharge</atitle><jtitle>AIP advances</jtitle><date>2019-08</date><risdate>2019</risdate><volume>9</volume><issue>8</issue><spage>085015</spage><epage>085015-9</epage><pages>085015-085015-9</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Nowadays, increasing concentration of CO2 in the atmosphere is a major threat for the environment and is a main reason for global warming. Variation in gas temperature and dissociation of CO2 into its by-products (CO and O) in a home-made dielectric barrier discharge (DBD) reactor have been reported as a function of discharge parameters, i.e., applied voltage and gas flow rate. To estimate the dissociation fraction of CO2 in the DBD reactor, the optical emission actinometry technique is employed in which 5% N2 is used as an actinometer. Emission lines of the Angstrom band of CO at 451.09 nm (B1∑  +v′=0−A1π, v″=0) and the 2nd positive system of N2 at 337.01 nm (C3πuv′=0−B3πg,v″=0) are used for actinometry measurements. To estimate the rate coefficients used in actinometry measurements, gas temperature is measured using the Boltzmann plot technique, from the rotational spectra of the Q-branch of the Angstrom band CO (0–1). To avoid discrepancy in gas temperature measurements, rotational temperature of the 2nd positive system, the N2 (0–1) band, is also measured. For this, synthetic spectra have been fitted over the experimentally recorded spectrum of the N2 (0–1) band. A slight difference in gas temperature has been noted for the Angstrom band of CO and the 2nd positive system of nitrogen. Conversely, an increasing trend in the dissociation fraction of CO2 with an increase in the applied voltage is noted. About 34% dissociation fraction is achieved for 10 kV applied voltage at a flow rate of 25 SCCM. With an increase in the gas flow rate (25–200 SCCM), a decrease in the dissociation fraction of CO2 from 34% to 11% is noted.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5096399</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2207-7848</orcidid><orcidid>https://orcid.org/0000-0001-6062-5836</orcidid><orcidid>https://orcid.org/0000-0002-5734-3667</orcidid><orcidid>https://orcid.org/0000-0002-7911-2587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2019-08, Vol.9 (8), p.085015-085015-9
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_1_5096399
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actinometry
Carbon dioxide
Carbon monoxide
Dielectric barrier discharge
Electric potential
Flow velocity
Gas flow
Gas temperature
Nitrogen plasma
Plasma
Rotational spectra
Voltage
title Spectroscopic study of CO2 and CO2–N2 mixture plasma using dielectric barrier discharge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20study%20of%20CO2%20and%20CO2%E2%80%93N2%20mixture%20plasma%20using%20dielectric%20barrier%20discharge&rft.jtitle=AIP%20advances&rft.au=Khan,%20M.%20I.&rft.date=2019-08&rft.volume=9&rft.issue=8&rft.spage=085015&rft.epage=085015-9&rft.pages=085015-085015-9&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5096399&rft_dat=%3Cproquest_cross%3E2274061998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2274061998&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_026bee138cf34761a1564682a9f06ba6&rfr_iscdi=true