Martin-Löf random quantum states

We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-09, Vol.60 (9)
Hauptverfasser: Nies, André, Scholz, Volkher B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of mathematical physics
container_volume 60
creator Nies, André
Scholz, Volkher B.
description We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward characterizing quantum ML-randomness of states by incompressibility (in the sense of quantum Turing machines) of all initial segments.
doi_str_mv 10.1063/1.5094660
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5094660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284844863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-e7cc41c829ed685015abdad85c5b10c97e86a3af2b0fd1f670d0efc96a19b2b43</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCo6jC9-g4kqh4zlpmqZLGbxBxY2uQ5oLdLCXSVLBF_MFfDErHXQhuDqbj_-c8xNyirBC4NkVrnIoGeewRxYIokwLnot9sgCgNKVMiENyFMIGAFEwtiBnj8rHpkurzw-XeNWZvk22o-ri2CYhqmjDMTlw6jXYk91ckpfbm-f1fVo93T2sr6tUZ7SIqS20ZqgFLa3hIgfMVW2UEbnOawRdFlZwlSlHa3AGHS_AgHW65ArLmtYsW5LzOXfw_Xa0IcpNP_puWikpFWy6VvBsUhez0r4PwVsnB9-0yr9LBPndgES5a2Cyl7MNupleafruB7_1_hfKwbj_8N_kL1q0aP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284844863</pqid></control><display><type>article</type><title>Martin-Löf random quantum states</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nies, André ; Scholz, Volkher B.</creator><creatorcontrib>Nies, André ; Scholz, Volkher B.</creatorcontrib><description>We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward characterizing quantum ML-randomness of states by incompressibility (in the sense of quantum Turing machines) of all initial segments.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5094660</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Incompressibility ; Physics ; Randomness ; Sequences ; Turing machines</subject><ispartof>Journal of mathematical physics, 2019-09, Vol.60 (9)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-e7cc41c829ed685015abdad85c5b10c97e86a3af2b0fd1f670d0efc96a19b2b43</citedby><cites>FETCH-LOGICAL-c327t-e7cc41c829ed685015abdad85c5b10c97e86a3af2b0fd1f670d0efc96a19b2b43</cites><orcidid>0000-0002-0666-5180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5094660$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Nies, André</creatorcontrib><creatorcontrib>Scholz, Volkher B.</creatorcontrib><title>Martin-Löf random quantum states</title><title>Journal of mathematical physics</title><description>We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward characterizing quantum ML-randomness of states by incompressibility (in the sense of quantum Turing machines) of all initial segments.</description><subject>Incompressibility</subject><subject>Physics</subject><subject>Randomness</subject><subject>Sequences</subject><subject>Turing machines</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgCo6jC9-g4kqh4zlpmqZLGbxBxY2uQ5oLdLCXSVLBF_MFfDErHXQhuDqbj_-c8xNyirBC4NkVrnIoGeewRxYIokwLnot9sgCgNKVMiENyFMIGAFEwtiBnj8rHpkurzw-XeNWZvk22o-ri2CYhqmjDMTlw6jXYk91ckpfbm-f1fVo93T2sr6tUZ7SIqS20ZqgFLa3hIgfMVW2UEbnOawRdFlZwlSlHa3AGHS_AgHW65ArLmtYsW5LzOXfw_Xa0IcpNP_puWikpFWy6VvBsUhez0r4PwVsnB9-0yr9LBPndgES5a2Cyl7MNupleafruB7_1_hfKwbj_8N_kL1q0aP8</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Nies, André</creator><creator>Scholz, Volkher B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0666-5180</orcidid></search><sort><creationdate>201909</creationdate><title>Martin-Löf random quantum states</title><author>Nies, André ; Scholz, Volkher B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-e7cc41c829ed685015abdad85c5b10c97e86a3af2b0fd1f670d0efc96a19b2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Incompressibility</topic><topic>Physics</topic><topic>Randomness</topic><topic>Sequences</topic><topic>Turing machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nies, André</creatorcontrib><creatorcontrib>Scholz, Volkher B.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nies, André</au><au>Scholz, Volkher B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Martin-Löf random quantum states</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-09</date><risdate>2019</risdate><volume>60</volume><issue>9</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward characterizing quantum ML-randomness of states by incompressibility (in the sense of quantum Turing machines) of all initial segments.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5094660</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0666-5180</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2019-09, Vol.60 (9)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_5094660
source AIP Journals Complete; Alma/SFX Local Collection
subjects Incompressibility
Physics
Randomness
Sequences
Turing machines
title Martin-Löf random quantum states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Martin-L%C3%B6f%20random%20quantum%20states&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Nies,%20Andr%C3%A9&rft.date=2019-09&rft.volume=60&rft.issue=9&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5094660&rft_dat=%3Cproquest_cross%3E2284844863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284844863&rft_id=info:pmid/&rfr_iscdi=true