Martin-Löf random quantum states
We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward chara...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2019-09, Vol.60 (9) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 60 |
creator | Nies, André Scholz, Volkher B. |
description | We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward characterizing quantum ML-randomness of states by incompressibility (in the sense of quantum Turing machines) of all initial segments. |
doi_str_mv | 10.1063/1.5094660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5094660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2284844863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-e7cc41c829ed685015abdad85c5b10c97e86a3af2b0fd1f670d0efc96a19b2b43</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCo6jC9-g4kqh4zlpmqZLGbxBxY2uQ5oLdLCXSVLBF_MFfDErHXQhuDqbj_-c8xNyirBC4NkVrnIoGeewRxYIokwLnot9sgCgNKVMiENyFMIGAFEwtiBnj8rHpkurzw-XeNWZvk22o-ri2CYhqmjDMTlw6jXYk91ckpfbm-f1fVo93T2sr6tUZ7SIqS20ZqgFLa3hIgfMVW2UEbnOawRdFlZwlSlHa3AGHS_AgHW65ArLmtYsW5LzOXfw_Xa0IcpNP_puWikpFWy6VvBsUhez0r4PwVsnB9-0yr9LBPndgES5a2Cyl7MNupleafruB7_1_hfKwbj_8N_kL1q0aP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2284844863</pqid></control><display><type>article</type><title>Martin-Löf random quantum states</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nies, André ; Scholz, Volkher B.</creator><creatorcontrib>Nies, André ; Scholz, Volkher B.</creatorcontrib><description>We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward characterizing quantum ML-randomness of states by incompressibility (in the sense of quantum Turing machines) of all initial segments.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5094660</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Incompressibility ; Physics ; Randomness ; Sequences ; Turing machines</subject><ispartof>Journal of mathematical physics, 2019-09, Vol.60 (9)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-e7cc41c829ed685015abdad85c5b10c97e86a3af2b0fd1f670d0efc96a19b2b43</citedby><cites>FETCH-LOGICAL-c327t-e7cc41c829ed685015abdad85c5b10c97e86a3af2b0fd1f670d0efc96a19b2b43</cites><orcidid>0000-0002-0666-5180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5094660$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Nies, André</creatorcontrib><creatorcontrib>Scholz, Volkher B.</creatorcontrib><title>Martin-Löf random quantum states</title><title>Journal of mathematical physics</title><description>We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward characterizing quantum ML-randomness of states by incompressibility (in the sense of quantum Turing machines) of all initial segments.</description><subject>Incompressibility</subject><subject>Physics</subject><subject>Randomness</subject><subject>Sequences</subject><subject>Turing machines</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgCo6jC9-g4kqh4zlpmqZLGbxBxY2uQ5oLdLCXSVLBF_MFfDErHXQhuDqbj_-c8xNyirBC4NkVrnIoGeewRxYIokwLnot9sgCgNKVMiENyFMIGAFEwtiBnj8rHpkurzw-XeNWZvk22o-ri2CYhqmjDMTlw6jXYk91ckpfbm-f1fVo93T2sr6tUZ7SIqS20ZqgFLa3hIgfMVW2UEbnOawRdFlZwlSlHa3AGHS_AgHW65ArLmtYsW5LzOXfw_Xa0IcpNP_puWikpFWy6VvBsUhez0r4PwVsnB9-0yr9LBPndgES5a2Cyl7MNupleafruB7_1_hfKwbj_8N_kL1q0aP8</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Nies, André</creator><creator>Scholz, Volkher B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0666-5180</orcidid></search><sort><creationdate>201909</creationdate><title>Martin-Löf random quantum states</title><author>Nies, André ; Scholz, Volkher B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-e7cc41c829ed685015abdad85c5b10c97e86a3af2b0fd1f670d0efc96a19b2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Incompressibility</topic><topic>Physics</topic><topic>Randomness</topic><topic>Sequences</topic><topic>Turing machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nies, André</creatorcontrib><creatorcontrib>Scholz, Volkher B.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nies, André</au><au>Scholz, Volkher B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Martin-Löf random quantum states</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-09</date><risdate>2019</risdate><volume>60</volume><issue>9</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward characterizing quantum ML-randomness of states by incompressibility (in the sense of quantum Turing machines) of all initial segments.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5094660</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0666-5180</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2019-09, Vol.60 (9) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5094660 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Incompressibility Physics Randomness Sequences Turing machines |
title | Martin-Löf random quantum states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Martin-L%C3%B6f%20random%20quantum%20states&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Nies,%20Andr%C3%A9&rft.date=2019-09&rft.volume=60&rft.issue=9&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5094660&rft_dat=%3Cproquest_cross%3E2284844863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2284844863&rft_id=info:pmid/&rfr_iscdi=true |