Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction
A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved p...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2019-05, Vol.31 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 31 |
creator | Hehner, Marc T. Gatti, Davide Kriegseis, Jochen |
description | A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved planar velocity fields are obtained with high-speed particle image velocimetry (PIV) in proximity of the discharge zones for quiescent ambient conditions. Resulting flow topologies and wall-normal velocity profiles indicate the Stokes-layer-like flow formation, which is elevated above the wall due to the no-slip condition. The underlying body forces are derived from the PIV data to provide further insight into cause-effect relations between pulsatile discharge and oscillatory flow. The momentum transfer domain is found to be only interrupted with the width of the exposed electrode, which is an important step toward homogeneous virtual wall oscillations. A comparison with earlier studies by Gatti et al. [“Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow,” Exp. Fluids 56, 110 (2015)] leads to the hypothesis that DBD-based turbulent drag reduction might be a competing alternative to conventional active and passive shear-layer formation strategies, where the adjustability of both oscillation frequency and velocity amplitude might cover a wide range of Reynolds numbers. |
doi_str_mv | 10.1063/1.5094388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5094388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224070866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-716617a634a4622217827fb32d062c66753da28a621f0e5e08aadc195e127c993</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4ufIOAK4WOubRJuxzEGwy4UNfhTJoOHTtJTdKB2YgP4RP6JLbOoAvB1bnw8f_wIXRKyYQSwS_pJCNFyvN8D40oyYtECiH2h12SRAhOD9FRCEtCCC-YGKG3x-heTEga2BiPK-dXEGtncWfL_oZ5MFYb7Cq8cuvaLnALPobP948ptm5tGuyCrpsGovMb3DYQVoBBx2544NKEemGHUBw7P-8aYyMuPSywN2Wnh55jdFBBE8zJbo7R883109VdMnu4vb-azhLNBYuJpEJQCYKnkArGGJU5k9Wcs5IIpoWQGS-B5SAYrYjJDMkBSk2LzFAmdVHwMTrb5rbevXYmRLV0nbd9perj0l5O3ssZo_Mtpb0LwZtKtb5egd8oStSgV1G109uzF1u2FxC_nf3Aa-d_QdWW1X_w3-Qvl-KLCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224070866</pqid></control><display><type>article</type><title>Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hehner, Marc T. ; Gatti, Davide ; Kriegseis, Jochen</creator><creatorcontrib>Hehner, Marc T. ; Gatti, Davide ; Kriegseis, Jochen</creatorcontrib><description>A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved planar velocity fields are obtained with high-speed particle image velocimetry (PIV) in proximity of the discharge zones for quiescent ambient conditions. Resulting flow topologies and wall-normal velocity profiles indicate the Stokes-layer-like flow formation, which is elevated above the wall due to the no-slip condition. The underlying body forces are derived from the PIV data to provide further insight into cause-effect relations between pulsatile discharge and oscillatory flow. The momentum transfer domain is found to be only interrupted with the width of the exposed electrode, which is an important step toward homogeneous virtual wall oscillations. A comparison with earlier studies by Gatti et al. [“Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow,” Exp. Fluids 56, 110 (2015)] leads to the hypothesis that DBD-based turbulent drag reduction might be a competing alternative to conventional active and passive shear-layer formation strategies, where the adjustability of both oscillation frequency and velocity amplitude might cover a wide range of Reynolds numbers.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5094388</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuator design ; Aerodynamics ; Channel flow ; Dielectric barrier discharge ; Drag reduction ; Electric power supplies ; Electrodes ; Fluid dynamics ; Fluid flow ; High voltages ; Momentum transfer ; Oscillating flow ; Oscillations ; Particle image velocimetry ; Plasma ; Shear layers ; Topology ; Velocity distribution ; Velocity measurement</subject><ispartof>Physics of fluids (1994), 2019-05, Vol.31 (5)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-716617a634a4622217827fb32d062c66753da28a621f0e5e08aadc195e127c993</citedby><cites>FETCH-LOGICAL-c362t-716617a634a4622217827fb32d062c66753da28a621f0e5e08aadc195e127c993</cites><orcidid>0000-0002-8178-9626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,4498,27905,27906</link.rule.ids></links><search><creatorcontrib>Hehner, Marc T.</creatorcontrib><creatorcontrib>Gatti, Davide</creatorcontrib><creatorcontrib>Kriegseis, Jochen</creatorcontrib><title>Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction</title><title>Physics of fluids (1994)</title><description>A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved planar velocity fields are obtained with high-speed particle image velocimetry (PIV) in proximity of the discharge zones for quiescent ambient conditions. Resulting flow topologies and wall-normal velocity profiles indicate the Stokes-layer-like flow formation, which is elevated above the wall due to the no-slip condition. The underlying body forces are derived from the PIV data to provide further insight into cause-effect relations between pulsatile discharge and oscillatory flow. The momentum transfer domain is found to be only interrupted with the width of the exposed electrode, which is an important step toward homogeneous virtual wall oscillations. A comparison with earlier studies by Gatti et al. [“Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow,” Exp. Fluids 56, 110 (2015)] leads to the hypothesis that DBD-based turbulent drag reduction might be a competing alternative to conventional active and passive shear-layer formation strategies, where the adjustability of both oscillation frequency and velocity amplitude might cover a wide range of Reynolds numbers.</description><subject>Actuator design</subject><subject>Aerodynamics</subject><subject>Channel flow</subject><subject>Dielectric barrier discharge</subject><subject>Drag reduction</subject><subject>Electric power supplies</subject><subject>Electrodes</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>High voltages</subject><subject>Momentum transfer</subject><subject>Oscillating flow</subject><subject>Oscillations</subject><subject>Particle image velocimetry</subject><subject>Plasma</subject><subject>Shear layers</subject><subject>Topology</subject><subject>Velocity distribution</subject><subject>Velocity measurement</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4ufIOAK4WOubRJuxzEGwy4UNfhTJoOHTtJTdKB2YgP4RP6JLbOoAvB1bnw8f_wIXRKyYQSwS_pJCNFyvN8D40oyYtECiH2h12SRAhOD9FRCEtCCC-YGKG3x-heTEga2BiPK-dXEGtncWfL_oZ5MFYb7Cq8cuvaLnALPobP948ptm5tGuyCrpsGovMb3DYQVoBBx2544NKEemGHUBw7P-8aYyMuPSywN2Wnh55jdFBBE8zJbo7R883109VdMnu4vb-azhLNBYuJpEJQCYKnkArGGJU5k9Wcs5IIpoWQGS-B5SAYrYjJDMkBSk2LzFAmdVHwMTrb5rbevXYmRLV0nbd9perj0l5O3ssZo_Mtpb0LwZtKtb5egd8oStSgV1G109uzF1u2FxC_nf3Aa-d_QdWW1X_w3-Qvl-KLCg</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Hehner, Marc T.</creator><creator>Gatti, Davide</creator><creator>Kriegseis, Jochen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8178-9626</orcidid></search><sort><creationdate>201905</creationdate><title>Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction</title><author>Hehner, Marc T. ; Gatti, Davide ; Kriegseis, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-716617a634a4622217827fb32d062c66753da28a621f0e5e08aadc195e127c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuator design</topic><topic>Aerodynamics</topic><topic>Channel flow</topic><topic>Dielectric barrier discharge</topic><topic>Drag reduction</topic><topic>Electric power supplies</topic><topic>Electrodes</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>High voltages</topic><topic>Momentum transfer</topic><topic>Oscillating flow</topic><topic>Oscillations</topic><topic>Particle image velocimetry</topic><topic>Plasma</topic><topic>Shear layers</topic><topic>Topology</topic><topic>Velocity distribution</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hehner, Marc T.</creatorcontrib><creatorcontrib>Gatti, Davide</creatorcontrib><creatorcontrib>Kriegseis, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hehner, Marc T.</au><au>Gatti, Davide</au><au>Kriegseis, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2019-05</date><risdate>2019</risdate><volume>31</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved planar velocity fields are obtained with high-speed particle image velocimetry (PIV) in proximity of the discharge zones for quiescent ambient conditions. Resulting flow topologies and wall-normal velocity profiles indicate the Stokes-layer-like flow formation, which is elevated above the wall due to the no-slip condition. The underlying body forces are derived from the PIV data to provide further insight into cause-effect relations between pulsatile discharge and oscillatory flow. The momentum transfer domain is found to be only interrupted with the width of the exposed electrode, which is an important step toward homogeneous virtual wall oscillations. A comparison with earlier studies by Gatti et al. [“Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow,” Exp. Fluids 56, 110 (2015)] leads to the hypothesis that DBD-based turbulent drag reduction might be a competing alternative to conventional active and passive shear-layer formation strategies, where the adjustability of both oscillation frequency and velocity amplitude might cover a wide range of Reynolds numbers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5094388</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8178-9626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2019-05, Vol.31 (5) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5094388 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Actuator design Aerodynamics Channel flow Dielectric barrier discharge Drag reduction Electric power supplies Electrodes Fluid dynamics Fluid flow High voltages Momentum transfer Oscillating flow Oscillations Particle image velocimetry Plasma Shear layers Topology Velocity distribution Velocity measurement |
title | Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stokes-layer%20formation%20under%20absence%20of%20moving%20parts%E2%80%94A%20novel%20oscillatory%20plasma%20actuator%20design%20for%20turbulent%20drag%20reduction&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Hehner,%20Marc%20T.&rft.date=2019-05&rft.volume=31&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5094388&rft_dat=%3Cproquest_cross%3E2224070866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224070866&rft_id=info:pmid/&rfr_iscdi=true |