Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction

A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2019-05, Vol.31 (5)
Hauptverfasser: Hehner, Marc T., Gatti, Davide, Kriegseis, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of fluids (1994)
container_volume 31
creator Hehner, Marc T.
Gatti, Davide
Kriegseis, Jochen
description A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved planar velocity fields are obtained with high-speed particle image velocimetry (PIV) in proximity of the discharge zones for quiescent ambient conditions. Resulting flow topologies and wall-normal velocity profiles indicate the Stokes-layer-like flow formation, which is elevated above the wall due to the no-slip condition. The underlying body forces are derived from the PIV data to provide further insight into cause-effect relations between pulsatile discharge and oscillatory flow. The momentum transfer domain is found to be only interrupted with the width of the exposed electrode, which is an important step toward homogeneous virtual wall oscillations. A comparison with earlier studies by Gatti et al. [“Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow,” Exp. Fluids 56, 110 (2015)] leads to the hypothesis that DBD-based turbulent drag reduction might be a competing alternative to conventional active and passive shear-layer formation strategies, where the adjustability of both oscillation frequency and velocity amplitude might cover a wide range of Reynolds numbers.
doi_str_mv 10.1063/1.5094388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5094388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224070866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-716617a634a4622217827fb32d062c66753da28a621f0e5e08aadc195e127c993</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4ufIOAK4WOubRJuxzEGwy4UNfhTJoOHTtJTdKB2YgP4RP6JLbOoAvB1bnw8f_wIXRKyYQSwS_pJCNFyvN8D40oyYtECiH2h12SRAhOD9FRCEtCCC-YGKG3x-heTEga2BiPK-dXEGtncWfL_oZ5MFYb7Cq8cuvaLnALPobP948ptm5tGuyCrpsGovMb3DYQVoBBx2544NKEemGHUBw7P-8aYyMuPSywN2Wnh55jdFBBE8zJbo7R883109VdMnu4vb-azhLNBYuJpEJQCYKnkArGGJU5k9Wcs5IIpoWQGS-B5SAYrYjJDMkBSk2LzFAmdVHwMTrb5rbevXYmRLV0nbd9perj0l5O3ssZo_Mtpb0LwZtKtb5egd8oStSgV1G109uzF1u2FxC_nf3Aa-d_QdWW1X_w3-Qvl-KLCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224070866</pqid></control><display><type>article</type><title>Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hehner, Marc T. ; Gatti, Davide ; Kriegseis, Jochen</creator><creatorcontrib>Hehner, Marc T. ; Gatti, Davide ; Kriegseis, Jochen</creatorcontrib><description>A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved planar velocity fields are obtained with high-speed particle image velocimetry (PIV) in proximity of the discharge zones for quiescent ambient conditions. Resulting flow topologies and wall-normal velocity profiles indicate the Stokes-layer-like flow formation, which is elevated above the wall due to the no-slip condition. The underlying body forces are derived from the PIV data to provide further insight into cause-effect relations between pulsatile discharge and oscillatory flow. The momentum transfer domain is found to be only interrupted with the width of the exposed electrode, which is an important step toward homogeneous virtual wall oscillations. A comparison with earlier studies by Gatti et al. [“Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow,” Exp. Fluids 56, 110 (2015)] leads to the hypothesis that DBD-based turbulent drag reduction might be a competing alternative to conventional active and passive shear-layer formation strategies, where the adjustability of both oscillation frequency and velocity amplitude might cover a wide range of Reynolds numbers.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.5094388</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuator design ; Aerodynamics ; Channel flow ; Dielectric barrier discharge ; Drag reduction ; Electric power supplies ; Electrodes ; Fluid dynamics ; Fluid flow ; High voltages ; Momentum transfer ; Oscillating flow ; Oscillations ; Particle image velocimetry ; Plasma ; Shear layers ; Topology ; Velocity distribution ; Velocity measurement</subject><ispartof>Physics of fluids (1994), 2019-05, Vol.31 (5)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-716617a634a4622217827fb32d062c66753da28a621f0e5e08aadc195e127c993</citedby><cites>FETCH-LOGICAL-c362t-716617a634a4622217827fb32d062c66753da28a621f0e5e08aadc195e127c993</cites><orcidid>0000-0002-8178-9626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,4498,27905,27906</link.rule.ids></links><search><creatorcontrib>Hehner, Marc T.</creatorcontrib><creatorcontrib>Gatti, Davide</creatorcontrib><creatorcontrib>Kriegseis, Jochen</creatorcontrib><title>Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction</title><title>Physics of fluids (1994)</title><description>A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved planar velocity fields are obtained with high-speed particle image velocimetry (PIV) in proximity of the discharge zones for quiescent ambient conditions. Resulting flow topologies and wall-normal velocity profiles indicate the Stokes-layer-like flow formation, which is elevated above the wall due to the no-slip condition. The underlying body forces are derived from the PIV data to provide further insight into cause-effect relations between pulsatile discharge and oscillatory flow. The momentum transfer domain is found to be only interrupted with the width of the exposed electrode, which is an important step toward homogeneous virtual wall oscillations. A comparison with earlier studies by Gatti et al. [“Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow,” Exp. Fluids 56, 110 (2015)] leads to the hypothesis that DBD-based turbulent drag reduction might be a competing alternative to conventional active and passive shear-layer formation strategies, where the adjustability of both oscillation frequency and velocity amplitude might cover a wide range of Reynolds numbers.</description><subject>Actuator design</subject><subject>Aerodynamics</subject><subject>Channel flow</subject><subject>Dielectric barrier discharge</subject><subject>Drag reduction</subject><subject>Electric power supplies</subject><subject>Electrodes</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>High voltages</subject><subject>Momentum transfer</subject><subject>Oscillating flow</subject><subject>Oscillations</subject><subject>Particle image velocimetry</subject><subject>Plasma</subject><subject>Shear layers</subject><subject>Topology</subject><subject>Velocity distribution</subject><subject>Velocity measurement</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4ufIOAK4WOubRJuxzEGwy4UNfhTJoOHTtJTdKB2YgP4RP6JLbOoAvB1bnw8f_wIXRKyYQSwS_pJCNFyvN8D40oyYtECiH2h12SRAhOD9FRCEtCCC-YGKG3x-heTEga2BiPK-dXEGtncWfL_oZ5MFYb7Cq8cuvaLnALPobP948ptm5tGuyCrpsGovMb3DYQVoBBx2544NKEemGHUBw7P-8aYyMuPSywN2Wnh55jdFBBE8zJbo7R883109VdMnu4vb-azhLNBYuJpEJQCYKnkArGGJU5k9Wcs5IIpoWQGS-B5SAYrYjJDMkBSk2LzFAmdVHwMTrb5rbevXYmRLV0nbd9perj0l5O3ssZo_Mtpb0LwZtKtb5egd8oStSgV1G109uzF1u2FxC_nf3Aa-d_QdWW1X_w3-Qvl-KLCg</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Hehner, Marc T.</creator><creator>Gatti, Davide</creator><creator>Kriegseis, Jochen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8178-9626</orcidid></search><sort><creationdate>201905</creationdate><title>Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction</title><author>Hehner, Marc T. ; Gatti, Davide ; Kriegseis, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-716617a634a4622217827fb32d062c66753da28a621f0e5e08aadc195e127c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuator design</topic><topic>Aerodynamics</topic><topic>Channel flow</topic><topic>Dielectric barrier discharge</topic><topic>Drag reduction</topic><topic>Electric power supplies</topic><topic>Electrodes</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>High voltages</topic><topic>Momentum transfer</topic><topic>Oscillating flow</topic><topic>Oscillations</topic><topic>Particle image velocimetry</topic><topic>Plasma</topic><topic>Shear layers</topic><topic>Topology</topic><topic>Velocity distribution</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hehner, Marc T.</creatorcontrib><creatorcontrib>Gatti, Davide</creatorcontrib><creatorcontrib>Kriegseis, Jochen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hehner, Marc T.</au><au>Gatti, Davide</au><au>Kriegseis, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2019-05</date><risdate>2019</risdate><volume>31</volume><issue>5</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A novel plasma actuator concept is proposed to mimic the effect of spanwise wall oscillations without mechanically moving parts, where four groups of electrodes and three independently operated high-voltage power supplies maintain a pulsatile dielectric barrier discharge (DBD) array. Time-resolved planar velocity fields are obtained with high-speed particle image velocimetry (PIV) in proximity of the discharge zones for quiescent ambient conditions. Resulting flow topologies and wall-normal velocity profiles indicate the Stokes-layer-like flow formation, which is elevated above the wall due to the no-slip condition. The underlying body forces are derived from the PIV data to provide further insight into cause-effect relations between pulsatile discharge and oscillatory flow. The momentum transfer domain is found to be only interrupted with the width of the exposed electrode, which is an important step toward homogeneous virtual wall oscillations. A comparison with earlier studies by Gatti et al. [“Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow,” Exp. Fluids 56, 110 (2015)] leads to the hypothesis that DBD-based turbulent drag reduction might be a competing alternative to conventional active and passive shear-layer formation strategies, where the adjustability of both oscillation frequency and velocity amplitude might cover a wide range of Reynolds numbers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5094388</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8178-9626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2019-05, Vol.31 (5)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_5094388
source AIP Journals Complete; Alma/SFX Local Collection
subjects Actuator design
Aerodynamics
Channel flow
Dielectric barrier discharge
Drag reduction
Electric power supplies
Electrodes
Fluid dynamics
Fluid flow
High voltages
Momentum transfer
Oscillating flow
Oscillations
Particle image velocimetry
Plasma
Shear layers
Topology
Velocity distribution
Velocity measurement
title Stokes-layer formation under absence of moving parts—A novel oscillatory plasma actuator design for turbulent drag reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stokes-layer%20formation%20under%20absence%20of%20moving%20parts%E2%80%94A%20novel%20oscillatory%20plasma%20actuator%20design%20for%20turbulent%20drag%20reduction&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Hehner,%20Marc%20T.&rft.date=2019-05&rft.volume=31&rft.issue=5&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.5094388&rft_dat=%3Cproquest_cross%3E2224070866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224070866&rft_id=info:pmid/&rfr_iscdi=true