Picosecond pulsed laser ablation of dielectric rods: Angle-dependent ablation process model for laser micromachining
The ablation of fused silica and sapphire is investigated from the perspective of laser micromachining. In this study, dielectric rods are machined using a 12 ps pulsed laser at 1064 nm wavelength. The machining of the rods is a calibration method to determine process parameters for an analytical ab...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019-06, Vol.125 (23) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 125 |
creator | Boerner, P. Hajri, M. Wahl, T. Weixler, J. Wegener, K. |
description | The ablation of fused silica and sapphire is investigated from the perspective of laser micromachining. In this study, dielectric rods are machined using a 12 ps pulsed laser at 1064 nm wavelength. The machining of the rods is a calibration method to determine process parameters for an analytical ablation model. More specifically, the ablation threshold fluence and effective penetration depth are determined under process-relevant conditions due to the removal of macroscopic volumes, which leads to a higher accordance. The introduced ablation model predicts macroscopic ablation volumes and ablation efficiencies of dielectric materials as a function of the angle of incidence. Originally, the ablation process model was developed for metals under the normal incidence, but this work extends its applicability to dielectrics. In contrast to metals, the optical penetration depth should be independent of the angle of incidence. Altogether, the presented model is universally applicable and can be seen as a first step toward computer-aided 3D-manufacturing using ultrashort pulsed lasers. The ability to predict ablation volumes and machine heat-sensitive tool materials with high accuracy and precision is demonstrated by the fabrication of end mills made of fused silica and sapphire with a diameter of 1 mm. This shows that picosecond lasers are well suited for the fabrication of such microcutting tools. In particular, the ability of ultrashort pulses to ablate materials independent of their hardness and without any wear makes this technology highly promising for the tooling industry. |
doi_str_mv | 10.1063/1.5092812 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5092812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2241748663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3f6219f3b2b3e14b1b41d27eb4b559f5ddef0d619c73e15b0cccb005c9146ef13</originalsourceid><addsrcrecordid>eNqdkE9LAzEUxIMoWKsHv0HAk8LWvM1md-OtFP9BQQ96XjbJS03ZJmuyFfz2rrbQu6d3mB8z84aQS2AzYCW_hZlgMq8hPyITYLXMKiHYMZkwlkNWy0qekrOU1owB1FxOyPDqdEiogze033YJDe3ahJG2qmsHFzwNlhqHHeohOk1jMOmOzv2qw8xgj96gHw5wH4PGlOgmGOyoDXHvtnE6hk2rP5x3fnVOTmw7Zl3s75S8P9y_LZ6y5cvj82K-zDSXfMi4LXOQlqtccYRCgSrA5BWqQgkhrTAGLTMlSF2NulBMa60YE1pCUaIFPiVXO9-x1ucW09Cswzb6MbLJ8wKqoi5LPlLXO2qsmFJE2_TRbdr43QBrfkdtoNmPOrI3OzZpN_y9_D_4K8QD2PTG8h9wq4dV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241748663</pqid></control><display><type>article</type><title>Picosecond pulsed laser ablation of dielectric rods: Angle-dependent ablation process model for laser micromachining</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Boerner, P. ; Hajri, M. ; Wahl, T. ; Weixler, J. ; Wegener, K.</creator><creatorcontrib>Boerner, P. ; Hajri, M. ; Wahl, T. ; Weixler, J. ; Wegener, K.</creatorcontrib><description>The ablation of fused silica and sapphire is investigated from the perspective of laser micromachining. In this study, dielectric rods are machined using a 12 ps pulsed laser at 1064 nm wavelength. The machining of the rods is a calibration method to determine process parameters for an analytical ablation model. More specifically, the ablation threshold fluence and effective penetration depth are determined under process-relevant conditions due to the removal of macroscopic volumes, which leads to a higher accordance. The introduced ablation model predicts macroscopic ablation volumes and ablation efficiencies of dielectric materials as a function of the angle of incidence. Originally, the ablation process model was developed for metals under the normal incidence, but this work extends its applicability to dielectrics. In contrast to metals, the optical penetration depth should be independent of the angle of incidence. Altogether, the presented model is universally applicable and can be seen as a first step toward computer-aided 3D-manufacturing using ultrashort pulsed lasers. The ability to predict ablation volumes and machine heat-sensitive tool materials with high accuracy and precision is demonstrated by the fabrication of end mills made of fused silica and sapphire with a diameter of 1 mm. This shows that picosecond lasers are well suited for the fabrication of such microcutting tools. In particular, the ability of ultrashort pulses to ablate materials independent of their hardness and without any wear makes this technology highly promising for the tooling industry.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5092812</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ablative materials ; Applied physics ; CAD/CAM ; Dielectrics ; End milling ; Fluence ; Fused silica ; Incidence angle ; Laser ablation ; Laser machining ; Lasers ; Micromachining ; Penetration depth ; Process parameters ; Pulsed lasers ; Rods ; Sapphire ; Silicon dioxide ; Tooling ; Ultrashort pulsed lasers</subject><ispartof>Journal of applied physics, 2019-06, Vol.125 (23)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3f6219f3b2b3e14b1b41d27eb4b559f5ddef0d619c73e15b0cccb005c9146ef13</citedby><cites>FETCH-LOGICAL-c393t-3f6219f3b2b3e14b1b41d27eb4b559f5ddef0d619c73e15b0cccb005c9146ef13</cites><orcidid>0000-0001-7165-136X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5092812$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27928,27929,76388</link.rule.ids></links><search><creatorcontrib>Boerner, P.</creatorcontrib><creatorcontrib>Hajri, M.</creatorcontrib><creatorcontrib>Wahl, T.</creatorcontrib><creatorcontrib>Weixler, J.</creatorcontrib><creatorcontrib>Wegener, K.</creatorcontrib><title>Picosecond pulsed laser ablation of dielectric rods: Angle-dependent ablation process model for laser micromachining</title><title>Journal of applied physics</title><description>The ablation of fused silica and sapphire is investigated from the perspective of laser micromachining. In this study, dielectric rods are machined using a 12 ps pulsed laser at 1064 nm wavelength. The machining of the rods is a calibration method to determine process parameters for an analytical ablation model. More specifically, the ablation threshold fluence and effective penetration depth are determined under process-relevant conditions due to the removal of macroscopic volumes, which leads to a higher accordance. The introduced ablation model predicts macroscopic ablation volumes and ablation efficiencies of dielectric materials as a function of the angle of incidence. Originally, the ablation process model was developed for metals under the normal incidence, but this work extends its applicability to dielectrics. In contrast to metals, the optical penetration depth should be independent of the angle of incidence. Altogether, the presented model is universally applicable and can be seen as a first step toward computer-aided 3D-manufacturing using ultrashort pulsed lasers. The ability to predict ablation volumes and machine heat-sensitive tool materials with high accuracy and precision is demonstrated by the fabrication of end mills made of fused silica and sapphire with a diameter of 1 mm. This shows that picosecond lasers are well suited for the fabrication of such microcutting tools. In particular, the ability of ultrashort pulses to ablate materials independent of their hardness and without any wear makes this technology highly promising for the tooling industry.</description><subject>Ablative materials</subject><subject>Applied physics</subject><subject>CAD/CAM</subject><subject>Dielectrics</subject><subject>End milling</subject><subject>Fluence</subject><subject>Fused silica</subject><subject>Incidence angle</subject><subject>Laser ablation</subject><subject>Laser machining</subject><subject>Lasers</subject><subject>Micromachining</subject><subject>Penetration depth</subject><subject>Process parameters</subject><subject>Pulsed lasers</subject><subject>Rods</subject><subject>Sapphire</subject><subject>Silicon dioxide</subject><subject>Tooling</subject><subject>Ultrashort pulsed lasers</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEUxIMoWKsHv0HAk8LWvM1md-OtFP9BQQ96XjbJS03ZJmuyFfz2rrbQu6d3mB8z84aQS2AzYCW_hZlgMq8hPyITYLXMKiHYMZkwlkNWy0qekrOU1owB1FxOyPDqdEiogze033YJDe3ahJG2qmsHFzwNlhqHHeohOk1jMOmOzv2qw8xgj96gHw5wH4PGlOgmGOyoDXHvtnE6hk2rP5x3fnVOTmw7Zl3s75S8P9y_LZ6y5cvj82K-zDSXfMi4LXOQlqtccYRCgSrA5BWqQgkhrTAGLTMlSF2NulBMa60YE1pCUaIFPiVXO9-x1ucW09Cswzb6MbLJ8wKqoi5LPlLXO2qsmFJE2_TRbdr43QBrfkdtoNmPOrI3OzZpN_y9_D_4K8QD2PTG8h9wq4dV</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Boerner, P.</creator><creator>Hajri, M.</creator><creator>Wahl, T.</creator><creator>Weixler, J.</creator><creator>Wegener, K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7165-136X</orcidid></search><sort><creationdate>20190621</creationdate><title>Picosecond pulsed laser ablation of dielectric rods: Angle-dependent ablation process model for laser micromachining</title><author>Boerner, P. ; Hajri, M. ; Wahl, T. ; Weixler, J. ; Wegener, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3f6219f3b2b3e14b1b41d27eb4b559f5ddef0d619c73e15b0cccb005c9146ef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ablative materials</topic><topic>Applied physics</topic><topic>CAD/CAM</topic><topic>Dielectrics</topic><topic>End milling</topic><topic>Fluence</topic><topic>Fused silica</topic><topic>Incidence angle</topic><topic>Laser ablation</topic><topic>Laser machining</topic><topic>Lasers</topic><topic>Micromachining</topic><topic>Penetration depth</topic><topic>Process parameters</topic><topic>Pulsed lasers</topic><topic>Rods</topic><topic>Sapphire</topic><topic>Silicon dioxide</topic><topic>Tooling</topic><topic>Ultrashort pulsed lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boerner, P.</creatorcontrib><creatorcontrib>Hajri, M.</creatorcontrib><creatorcontrib>Wahl, T.</creatorcontrib><creatorcontrib>Weixler, J.</creatorcontrib><creatorcontrib>Wegener, K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boerner, P.</au><au>Hajri, M.</au><au>Wahl, T.</au><au>Weixler, J.</au><au>Wegener, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Picosecond pulsed laser ablation of dielectric rods: Angle-dependent ablation process model for laser micromachining</atitle><jtitle>Journal of applied physics</jtitle><date>2019-06-21</date><risdate>2019</risdate><volume>125</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The ablation of fused silica and sapphire is investigated from the perspective of laser micromachining. In this study, dielectric rods are machined using a 12 ps pulsed laser at 1064 nm wavelength. The machining of the rods is a calibration method to determine process parameters for an analytical ablation model. More specifically, the ablation threshold fluence and effective penetration depth are determined under process-relevant conditions due to the removal of macroscopic volumes, which leads to a higher accordance. The introduced ablation model predicts macroscopic ablation volumes and ablation efficiencies of dielectric materials as a function of the angle of incidence. Originally, the ablation process model was developed for metals under the normal incidence, but this work extends its applicability to dielectrics. In contrast to metals, the optical penetration depth should be independent of the angle of incidence. Altogether, the presented model is universally applicable and can be seen as a first step toward computer-aided 3D-manufacturing using ultrashort pulsed lasers. The ability to predict ablation volumes and machine heat-sensitive tool materials with high accuracy and precision is demonstrated by the fabrication of end mills made of fused silica and sapphire with a diameter of 1 mm. This shows that picosecond lasers are well suited for the fabrication of such microcutting tools. In particular, the ability of ultrashort pulses to ablate materials independent of their hardness and without any wear makes this technology highly promising for the tooling industry.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5092812</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7165-136X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2019-06, Vol.125 (23) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5092812 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Ablative materials Applied physics CAD/CAM Dielectrics End milling Fluence Fused silica Incidence angle Laser ablation Laser machining Lasers Micromachining Penetration depth Process parameters Pulsed lasers Rods Sapphire Silicon dioxide Tooling Ultrashort pulsed lasers |
title | Picosecond pulsed laser ablation of dielectric rods: Angle-dependent ablation process model for laser micromachining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Picosecond%20pulsed%20laser%20ablation%20of%20dielectric%20rods:%20Angle-dependent%20ablation%20process%20model%20for%20laser%20micromachining&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Boerner,%20P.&rft.date=2019-06-21&rft.volume=125&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5092812&rft_dat=%3Cproquest_cross%3E2241748663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2241748663&rft_id=info:pmid/&rfr_iscdi=true |