Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws

In this article, we study the Riemann problem for a strictly hyperbolic system of conservation laws. The governing system arises in nonlinear elasticity and gas dynamics. The system is one of the examples of a strictly hyperbolic system whose Riemann solution consists of delta shock waves as well as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-05, Vol.60 (5)
Hauptverfasser: Sen, Anupam, Raja Sekhar, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of mathematical physics
container_volume 60
creator Sen, Anupam
Raja Sekhar, T.
description In this article, we study the Riemann problem for a strictly hyperbolic system of conservation laws. The governing system arises in nonlinear elasticity and gas dynamics. The system is one of the examples of a strictly hyperbolic system whose Riemann solution consists of delta shock waves as well as classical elementary waves such as shock waves, rarefaction waves, and contact discontinuities. We discuss the existence and uniqueness of the solution of the Riemann problem involving δ-shock wave by using a self-similar vanishing viscosity approach. We show that δ-shock wave is a weak*-limit of L1 solution to some viscous perturbations as the viscosity vanishes.
doi_str_mv 10.1063/1.5092668
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5092668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224639795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3ea4052f8fa56543ccb1a6986a6e7a5ee284f38e74f52eaa35f0f0044d5f97653</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNd-bPUr9hIIXPS9pmtDUbbNm0i37793agndPA8MzM7yD0DUlE0oUv6cTSSqmlD5BI0p0VZRK6lM0IoSxggmtz9EFwIoQSrUQI-QfXZMNhmW0X3hnOocNYHCNLyCsQ2MS7gLYCCH3uBk6GfuY8DCQU7C56fGyb12axyZYDD1kt8bRYxs34FJncogb3JgdXKIzbxpwV8c6Rp_PTx_T12L2_vI2fZgVlrMyF9wZQSTz2huppODWzqlRlVZGudJI55gWnmtXCi-ZM4ZLTzwhQiykr4akfIxuDnvbFL-3DnK9itu0GU7WjDGheFVWe3V7UDZFgOR83aawNqmvKan3b6xpfXzjYO8OFmzIv4H-h7uY_mDdLjz_AeWfggA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224639795</pqid></control><display><type>article</type><title>Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sen, Anupam ; Raja Sekhar, T.</creator><creatorcontrib>Sen, Anupam ; Raja Sekhar, T.</creatorcontrib><description>In this article, we study the Riemann problem for a strictly hyperbolic system of conservation laws. The governing system arises in nonlinear elasticity and gas dynamics. The system is one of the examples of a strictly hyperbolic system whose Riemann solution consists of delta shock waves as well as classical elementary waves such as shock waves, rarefaction waves, and contact discontinuities. We discuss the existence and uniqueness of the solution of the Riemann problem involving δ-shock wave by using a self-similar vanishing viscosity approach. We show that δ-shock wave is a weak*-limit of L1 solution to some viscous perturbations as the viscosity vanishes.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5092668</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Conservation laws ; Elasticity ; Gas dynamics ; Hyperbolic systems ; Physics ; Rarefaction ; Self-similarity ; Shock waves ; Viscosity</subject><ispartof>Journal of mathematical physics, 2019-05, Vol.60 (5)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3ea4052f8fa56543ccb1a6986a6e7a5ee284f38e74f52eaa35f0f0044d5f97653</citedby><cites>FETCH-LOGICAL-c327t-3ea4052f8fa56543ccb1a6986a6e7a5ee284f38e74f52eaa35f0f0044d5f97653</cites><orcidid>0000-0002-4785-2134 ; 0000-0003-3463-758X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5092668$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Sen, Anupam</creatorcontrib><creatorcontrib>Raja Sekhar, T.</creatorcontrib><title>Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws</title><title>Journal of mathematical physics</title><description>In this article, we study the Riemann problem for a strictly hyperbolic system of conservation laws. The governing system arises in nonlinear elasticity and gas dynamics. The system is one of the examples of a strictly hyperbolic system whose Riemann solution consists of delta shock waves as well as classical elementary waves such as shock waves, rarefaction waves, and contact discontinuities. We discuss the existence and uniqueness of the solution of the Riemann problem involving δ-shock wave by using a self-similar vanishing viscosity approach. We show that δ-shock wave is a weak*-limit of L1 solution to some viscous perturbations as the viscosity vanishes.</description><subject>Conservation laws</subject><subject>Elasticity</subject><subject>Gas dynamics</subject><subject>Hyperbolic systems</subject><subject>Physics</subject><subject>Rarefaction</subject><subject>Self-similarity</subject><subject>Shock waves</subject><subject>Viscosity</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNd-bPUr9hIIXPS9pmtDUbbNm0i37793agndPA8MzM7yD0DUlE0oUv6cTSSqmlD5BI0p0VZRK6lM0IoSxggmtz9EFwIoQSrUQI-QfXZMNhmW0X3hnOocNYHCNLyCsQ2MS7gLYCCH3uBk6GfuY8DCQU7C56fGyb12axyZYDD1kt8bRYxs34FJncogb3JgdXKIzbxpwV8c6Rp_PTx_T12L2_vI2fZgVlrMyF9wZQSTz2huppODWzqlRlVZGudJI55gWnmtXCi-ZM4ZLTzwhQiykr4akfIxuDnvbFL-3DnK9itu0GU7WjDGheFVWe3V7UDZFgOR83aawNqmvKan3b6xpfXzjYO8OFmzIv4H-h7uY_mDdLjz_AeWfggA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Sen, Anupam</creator><creator>Raja Sekhar, T.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4785-2134</orcidid><orcidid>https://orcid.org/0000-0003-3463-758X</orcidid></search><sort><creationdate>201905</creationdate><title>Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws</title><author>Sen, Anupam ; Raja Sekhar, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3ea4052f8fa56543ccb1a6986a6e7a5ee284f38e74f52eaa35f0f0044d5f97653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Conservation laws</topic><topic>Elasticity</topic><topic>Gas dynamics</topic><topic>Hyperbolic systems</topic><topic>Physics</topic><topic>Rarefaction</topic><topic>Self-similarity</topic><topic>Shock waves</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Anupam</creatorcontrib><creatorcontrib>Raja Sekhar, T.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Anupam</au><au>Raja Sekhar, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-05</date><risdate>2019</risdate><volume>60</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this article, we study the Riemann problem for a strictly hyperbolic system of conservation laws. The governing system arises in nonlinear elasticity and gas dynamics. The system is one of the examples of a strictly hyperbolic system whose Riemann solution consists of delta shock waves as well as classical elementary waves such as shock waves, rarefaction waves, and contact discontinuities. We discuss the existence and uniqueness of the solution of the Riemann problem involving δ-shock wave by using a self-similar vanishing viscosity approach. We show that δ-shock wave is a weak*-limit of L1 solution to some viscous perturbations as the viscosity vanishes.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5092668</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4785-2134</orcidid><orcidid>https://orcid.org/0000-0003-3463-758X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2019-05, Vol.60 (5)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_5092668
source AIP Journals Complete; Alma/SFX Local Collection
subjects Conservation laws
Elasticity
Gas dynamics
Hyperbolic systems
Physics
Rarefaction
Self-similarity
Shock waves
Viscosity
title Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delta%20shock%20wave%20as%20self-similar%20viscosity%20limit%20for%20a%20strictly%20hyperbolic%20system%20of%20conservation%20laws&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Sen,%20Anupam&rft.date=2019-05&rft.volume=60&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5092668&rft_dat=%3Cproquest_cross%3E2224639795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224639795&rft_id=info:pmid/&rfr_iscdi=true