Quantitative quantum mechanical approach to SABRE hyperpolarization at high magnetic fields

A theoretical approach is proposed for quantitative modeling of SABRE (Signal Amplification by Reversible Exchange) experiments performed using an NMR spectrometer at a high magnetic field. SABRE is a method that exploits the spin order of parahydrogen (the H2 molecule in its nuclear singlet state)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-03, Vol.150 (12), p.124106-124106
Hauptverfasser: Knecht, Stephan, Ivanov, Konstantin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theoretical approach is proposed for quantitative modeling of SABRE (Signal Amplification by Reversible Exchange) experiments performed using an NMR spectrometer at a high magnetic field. SABRE is a method that exploits the spin order of parahydrogen (the H2 molecule in its nuclear singlet state) for hyper-polarizing the spins of various substrates to enhance their NMR signals. An important feature of SABRE is that the substrate is not modified chemically; instead, spin order transfer takes place in a transient complex with parahydrogen. In high-field SABRE experiments, such a transfer is achieved by using suitable NMR excitation schemes. The approach presented here can explicitly treat the spin dynamics in the SABRE complex as well as the kinetics of substrate exchange (between the free and bound form) and complex interplay of spin evolution and chemical processes. One more important effect included in the model is the alteration of the spin state of parahydrogen giving rise to the formation of anti-phase spin order from the initial singlet order. Such a treatment enables a detailed analysis of known high-field SABRE schemes, quantitative comparison with experiments, and elucidation of the key factors that limit the resulting NMR signal enhancement.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5084129