Thermal-induced irreversible straining of ultrathin boron nitride nanosheets

We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2019-02, Vol.114 (5)
Hauptverfasser: Qu, Wenyang, Gou, Feilin, Ke, Changhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied physics letters
container_volume 114
creator Qu, Wenyang
Gou, Feilin
Ke, Changhong
description We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the reversible expansion/contraction of the substrate at relatively low temperatures. Irreversible deformations in BNNS are observed at elevated temperatures, which are attributed to interfacial sliding on the BNNS-substrate interface that is caused by the temperature-dependent thermal expansion mismatch of BN and substrate materials. Monolayer BNNS is found to possess the highest onset temperature of irreversible straining, which decreases with an increase in the BNNS thickness. The interfacial load transfer characteristics of the BNNS-substrate interface are quantitatively investigated using a micromechanics model. The analysis reveals that monolayer BNNS possesses a maximum interfacial shear strength of about 28.38 MPa on its binding interface with substrates at about 525 °C. The findings are useful to better understand the fundamental structural and mechanical properties of BNNS and in pursuit of its applications, in particular, those involved with high temperature processing and/or working environments.
doi_str_mv 10.1063/1.5083960
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5083960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175685034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7ac39f5785e62f49458215936112377cc040a2c223b3f386b39f19a23e43758b3</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs7pwX8Q8KTQmeRrmvQow6kw8DLPIU1Tl9ElM0kH_nsrG3oQPH288PB-8CJ0TcmMkgru6YwTCXVFTtCEEiEKoFSeogkhBIqq5vQcXaS0GSNnABO0XK1t3Oq-cL4djG2xi9HubUyu6S1OOWrnnX_HocNDP6a8dh43IQaPvcvRtRZ77UNaW5vTJTrrdJ_s1fFO0dvicTV_LpavTy_zh2VhgIlcCG2g7riQ3FasK-uSS0Z5DRWlDIQwhpREM8MYNNCBrJpR01ozsCUILhuYoptD7y6Gj8GmrDZhiH58qRgVvJKcQDmq24MyMaQUbad20W11_FSUqO-xFFXHsUZ7d7DJuKyzC_4H70P8hWrXdv_hv81fUs52-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175685034</pqid></control><display><type>article</type><title>Thermal-induced irreversible straining of ultrathin boron nitride nanosheets</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Qu, Wenyang ; Gou, Feilin ; Ke, Changhong</creator><creatorcontrib>Qu, Wenyang ; Gou, Feilin ; Ke, Changhong</creatorcontrib><description>We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the reversible expansion/contraction of the substrate at relatively low temperatures. Irreversible deformations in BNNS are observed at elevated temperatures, which are attributed to interfacial sliding on the BNNS-substrate interface that is caused by the temperature-dependent thermal expansion mismatch of BN and substrate materials. Monolayer BNNS is found to possess the highest onset temperature of irreversible straining, which decreases with an increase in the BNNS thickness. The interfacial load transfer characteristics of the BNNS-substrate interface are quantitatively investigated using a micromechanics model. The analysis reveals that monolayer BNNS possesses a maximum interfacial shear strength of about 28.38 MPa on its binding interface with substrates at about 525 °C. The findings are useful to better understand the fundamental structural and mechanical properties of BNNS and in pursuit of its applications, in particular, those involved with high temperature processing and/or working environments.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5083960</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopy ; Boron nitride ; Deformation mechanisms ; High temperature ; Interfacial shear strength ; Load transfer ; Mechanical properties ; Micromechanics ; Monolayers ; Nanosheets ; Raman spectroscopy ; Shear strength ; Silicon dioxide ; Silicon substrates ; Temperature ; Temperature dependence ; Thermal expansion</subject><ispartof>Applied physics letters, 2019-02, Vol.114 (5)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7ac39f5785e62f49458215936112377cc040a2c223b3f386b39f19a23e43758b3</citedby><cites>FETCH-LOGICAL-c327t-7ac39f5785e62f49458215936112377cc040a2c223b3f386b39f19a23e43758b3</cites><orcidid>0000-0002-5170-9859 ; 0000-0002-1567-6340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5083960$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Qu, Wenyang</creatorcontrib><creatorcontrib>Gou, Feilin</creatorcontrib><creatorcontrib>Ke, Changhong</creatorcontrib><title>Thermal-induced irreversible straining of ultrathin boron nitride nanosheets</title><title>Applied physics letters</title><description>We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the reversible expansion/contraction of the substrate at relatively low temperatures. Irreversible deformations in BNNS are observed at elevated temperatures, which are attributed to interfacial sliding on the BNNS-substrate interface that is caused by the temperature-dependent thermal expansion mismatch of BN and substrate materials. Monolayer BNNS is found to possess the highest onset temperature of irreversible straining, which decreases with an increase in the BNNS thickness. The interfacial load transfer characteristics of the BNNS-substrate interface are quantitatively investigated using a micromechanics model. The analysis reveals that monolayer BNNS possesses a maximum interfacial shear strength of about 28.38 MPa on its binding interface with substrates at about 525 °C. The findings are useful to better understand the fundamental structural and mechanical properties of BNNS and in pursuit of its applications, in particular, those involved with high temperature processing and/or working environments.</description><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Boron nitride</subject><subject>Deformation mechanisms</subject><subject>High temperature</subject><subject>Interfacial shear strength</subject><subject>Load transfer</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Monolayers</subject><subject>Nanosheets</subject><subject>Raman spectroscopy</subject><subject>Shear strength</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYBuAgCs7pwX8Q8KTQmeRrmvQow6kw8DLPIU1Tl9ElM0kH_nsrG3oQPH288PB-8CJ0TcmMkgru6YwTCXVFTtCEEiEKoFSeogkhBIqq5vQcXaS0GSNnABO0XK1t3Oq-cL4djG2xi9HubUyu6S1OOWrnnX_HocNDP6a8dh43IQaPvcvRtRZ77UNaW5vTJTrrdJ_s1fFO0dvicTV_LpavTy_zh2VhgIlcCG2g7riQ3FasK-uSS0Z5DRWlDIQwhpREM8MYNNCBrJpR01ozsCUILhuYoptD7y6Gj8GmrDZhiH58qRgVvJKcQDmq24MyMaQUbad20W11_FSUqO-xFFXHsUZ7d7DJuKyzC_4H70P8hWrXdv_hv81fUs52-Q</recordid><startdate>20190204</startdate><enddate>20190204</enddate><creator>Qu, Wenyang</creator><creator>Gou, Feilin</creator><creator>Ke, Changhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5170-9859</orcidid><orcidid>https://orcid.org/0000-0002-1567-6340</orcidid></search><sort><creationdate>20190204</creationdate><title>Thermal-induced irreversible straining of ultrathin boron nitride nanosheets</title><author>Qu, Wenyang ; Gou, Feilin ; Ke, Changhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7ac39f5785e62f49458215936112377cc040a2c223b3f386b39f19a23e43758b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Boron nitride</topic><topic>Deformation mechanisms</topic><topic>High temperature</topic><topic>Interfacial shear strength</topic><topic>Load transfer</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Monolayers</topic><topic>Nanosheets</topic><topic>Raman spectroscopy</topic><topic>Shear strength</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Wenyang</creatorcontrib><creatorcontrib>Gou, Feilin</creatorcontrib><creatorcontrib>Ke, Changhong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Wenyang</au><au>Gou, Feilin</au><au>Ke, Changhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal-induced irreversible straining of ultrathin boron nitride nanosheets</atitle><jtitle>Applied physics letters</jtitle><date>2019-02-04</date><risdate>2019</risdate><volume>114</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the reversible expansion/contraction of the substrate at relatively low temperatures. Irreversible deformations in BNNS are observed at elevated temperatures, which are attributed to interfacial sliding on the BNNS-substrate interface that is caused by the temperature-dependent thermal expansion mismatch of BN and substrate materials. Monolayer BNNS is found to possess the highest onset temperature of irreversible straining, which decreases with an increase in the BNNS thickness. The interfacial load transfer characteristics of the BNNS-substrate interface are quantitatively investigated using a micromechanics model. The analysis reveals that monolayer BNNS possesses a maximum interfacial shear strength of about 28.38 MPa on its binding interface with substrates at about 525 °C. The findings are useful to better understand the fundamental structural and mechanical properties of BNNS and in pursuit of its applications, in particular, those involved with high temperature processing and/or working environments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5083960</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5170-9859</orcidid><orcidid>https://orcid.org/0000-0002-1567-6340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2019-02, Vol.114 (5)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_5083960
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Atomic force microscopy
Boron nitride
Deformation mechanisms
High temperature
Interfacial shear strength
Load transfer
Mechanical properties
Micromechanics
Monolayers
Nanosheets
Raman spectroscopy
Shear strength
Silicon dioxide
Silicon substrates
Temperature
Temperature dependence
Thermal expansion
title Thermal-induced irreversible straining of ultrathin boron nitride nanosheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal-induced%20irreversible%20straining%20of%20ultrathin%20boron%20nitride%20nanosheets&rft.jtitle=Applied%20physics%20letters&rft.au=Qu,%20Wenyang&rft.date=2019-02-04&rft.volume=114&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5083960&rft_dat=%3Cproquest_cross%3E2175685034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175685034&rft_id=info:pmid/&rfr_iscdi=true