Thermal-induced irreversible straining of ultrathin boron nitride nanosheets
We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the re...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2019-02, Vol.114 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 114 |
creator | Qu, Wenyang Gou, Feilin Ke, Changhong |
description | We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the reversible expansion/contraction of the substrate at relatively low temperatures. Irreversible deformations in BNNS are observed at elevated temperatures, which are attributed to interfacial sliding on the BNNS-substrate interface that is caused by the temperature-dependent thermal expansion mismatch of BN and substrate materials. Monolayer BNNS is found to possess the highest onset temperature of irreversible straining, which decreases with an increase in the BNNS thickness. The interfacial load transfer characteristics of the BNNS-substrate interface are quantitatively investigated using a micromechanics model. The analysis reveals that monolayer BNNS possesses a maximum interfacial shear strength of about 28.38 MPa on its binding interface with substrates at about 525 °C. The findings are useful to better understand the fundamental structural and mechanical properties of BNNS and in pursuit of its applications, in particular, those involved with high temperature processing and/or working environments. |
doi_str_mv | 10.1063/1.5083960 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5083960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175685034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7ac39f5785e62f49458215936112377cc040a2c223b3f386b39f19a23e43758b3</originalsourceid><addsrcrecordid>eNp90EFLwzAYBuAgCs7pwX8Q8KTQmeRrmvQow6kw8DLPIU1Tl9ElM0kH_nsrG3oQPH288PB-8CJ0TcmMkgru6YwTCXVFTtCEEiEKoFSeogkhBIqq5vQcXaS0GSNnABO0XK1t3Oq-cL4djG2xi9HubUyu6S1OOWrnnX_HocNDP6a8dh43IQaPvcvRtRZ77UNaW5vTJTrrdJ_s1fFO0dvicTV_LpavTy_zh2VhgIlcCG2g7riQ3FasK-uSS0Z5DRWlDIQwhpREM8MYNNCBrJpR01ozsCUILhuYoptD7y6Gj8GmrDZhiH58qRgVvJKcQDmq24MyMaQUbad20W11_FSUqO-xFFXHsUZ7d7DJuKyzC_4H70P8hWrXdv_hv81fUs52-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175685034</pqid></control><display><type>article</type><title>Thermal-induced irreversible straining of ultrathin boron nitride nanosheets</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Qu, Wenyang ; Gou, Feilin ; Ke, Changhong</creator><creatorcontrib>Qu, Wenyang ; Gou, Feilin ; Ke, Changhong</creatorcontrib><description>We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the reversible expansion/contraction of the substrate at relatively low temperatures. Irreversible deformations in BNNS are observed at elevated temperatures, which are attributed to interfacial sliding on the BNNS-substrate interface that is caused by the temperature-dependent thermal expansion mismatch of BN and substrate materials. Monolayer BNNS is found to possess the highest onset temperature of irreversible straining, which decreases with an increase in the BNNS thickness. The interfacial load transfer characteristics of the BNNS-substrate interface are quantitatively investigated using a micromechanics model. The analysis reveals that monolayer BNNS possesses a maximum interfacial shear strength of about 28.38 MPa on its binding interface with substrates at about 525 °C. The findings are useful to better understand the fundamental structural and mechanical properties of BNNS and in pursuit of its applications, in particular, those involved with high temperature processing and/or working environments.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5083960</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopy ; Boron nitride ; Deformation mechanisms ; High temperature ; Interfacial shear strength ; Load transfer ; Mechanical properties ; Micromechanics ; Monolayers ; Nanosheets ; Raman spectroscopy ; Shear strength ; Silicon dioxide ; Silicon substrates ; Temperature ; Temperature dependence ; Thermal expansion</subject><ispartof>Applied physics letters, 2019-02, Vol.114 (5)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7ac39f5785e62f49458215936112377cc040a2c223b3f386b39f19a23e43758b3</citedby><cites>FETCH-LOGICAL-c327t-7ac39f5785e62f49458215936112377cc040a2c223b3f386b39f19a23e43758b3</cites><orcidid>0000-0002-5170-9859 ; 0000-0002-1567-6340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5083960$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Qu, Wenyang</creatorcontrib><creatorcontrib>Gou, Feilin</creatorcontrib><creatorcontrib>Ke, Changhong</creatorcontrib><title>Thermal-induced irreversible straining of ultrathin boron nitride nanosheets</title><title>Applied physics letters</title><description>We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the reversible expansion/contraction of the substrate at relatively low temperatures. Irreversible deformations in BNNS are observed at elevated temperatures, which are attributed to interfacial sliding on the BNNS-substrate interface that is caused by the temperature-dependent thermal expansion mismatch of BN and substrate materials. Monolayer BNNS is found to possess the highest onset temperature of irreversible straining, which decreases with an increase in the BNNS thickness. The interfacial load transfer characteristics of the BNNS-substrate interface are quantitatively investigated using a micromechanics model. The analysis reveals that monolayer BNNS possesses a maximum interfacial shear strength of about 28.38 MPa on its binding interface with substrates at about 525 °C. The findings are useful to better understand the fundamental structural and mechanical properties of BNNS and in pursuit of its applications, in particular, those involved with high temperature processing and/or working environments.</description><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Boron nitride</subject><subject>Deformation mechanisms</subject><subject>High temperature</subject><subject>Interfacial shear strength</subject><subject>Load transfer</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Monolayers</subject><subject>Nanosheets</subject><subject>Raman spectroscopy</subject><subject>Shear strength</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAYBuAgCs7pwX8Q8KTQmeRrmvQow6kw8DLPIU1Tl9ElM0kH_nsrG3oQPH288PB-8CJ0TcmMkgru6YwTCXVFTtCEEiEKoFSeogkhBIqq5vQcXaS0GSNnABO0XK1t3Oq-cL4djG2xi9HubUyu6S1OOWrnnX_HocNDP6a8dh43IQaPvcvRtRZ77UNaW5vTJTrrdJ_s1fFO0dvicTV_LpavTy_zh2VhgIlcCG2g7riQ3FasK-uSS0Z5DRWlDIQwhpREM8MYNNCBrJpR01ozsCUILhuYoptD7y6Gj8GmrDZhiH58qRgVvJKcQDmq24MyMaQUbad20W11_FSUqO-xFFXHsUZ7d7DJuKyzC_4H70P8hWrXdv_hv81fUs52-Q</recordid><startdate>20190204</startdate><enddate>20190204</enddate><creator>Qu, Wenyang</creator><creator>Gou, Feilin</creator><creator>Ke, Changhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5170-9859</orcidid><orcidid>https://orcid.org/0000-0002-1567-6340</orcidid></search><sort><creationdate>20190204</creationdate><title>Thermal-induced irreversible straining of ultrathin boron nitride nanosheets</title><author>Qu, Wenyang ; Gou, Feilin ; Ke, Changhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7ac39f5785e62f49458215936112377cc040a2c223b3f386b39f19a23e43758b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Boron nitride</topic><topic>Deformation mechanisms</topic><topic>High temperature</topic><topic>Interfacial shear strength</topic><topic>Load transfer</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Monolayers</topic><topic>Nanosheets</topic><topic>Raman spectroscopy</topic><topic>Shear strength</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Wenyang</creatorcontrib><creatorcontrib>Gou, Feilin</creatorcontrib><creatorcontrib>Ke, Changhong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Wenyang</au><au>Gou, Feilin</au><au>Ke, Changhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal-induced irreversible straining of ultrathin boron nitride nanosheets</atitle><jtitle>Applied physics letters</jtitle><date>2019-02-04</date><risdate>2019</risdate><volume>114</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We investigate the thermal-induced mechanical deformations in mono- and few-layer hexagonal boron nitride nanosheets (BNNSs) on flat silicon dioxide substrates by using atomic force microscopy and Raman spectroscopy techniques. The measurements reveal that the deformation of thin BNNS follows the reversible expansion/contraction of the substrate at relatively low temperatures. Irreversible deformations in BNNS are observed at elevated temperatures, which are attributed to interfacial sliding on the BNNS-substrate interface that is caused by the temperature-dependent thermal expansion mismatch of BN and substrate materials. Monolayer BNNS is found to possess the highest onset temperature of irreversible straining, which decreases with an increase in the BNNS thickness. The interfacial load transfer characteristics of the BNNS-substrate interface are quantitatively investigated using a micromechanics model. The analysis reveals that monolayer BNNS possesses a maximum interfacial shear strength of about 28.38 MPa on its binding interface with substrates at about 525 °C. The findings are useful to better understand the fundamental structural and mechanical properties of BNNS and in pursuit of its applications, in particular, those involved with high temperature processing and/or working environments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5083960</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5170-9859</orcidid><orcidid>https://orcid.org/0000-0002-1567-6340</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2019-02, Vol.114 (5) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5083960 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Atomic force microscopy Boron nitride Deformation mechanisms High temperature Interfacial shear strength Load transfer Mechanical properties Micromechanics Monolayers Nanosheets Raman spectroscopy Shear strength Silicon dioxide Silicon substrates Temperature Temperature dependence Thermal expansion |
title | Thermal-induced irreversible straining of ultrathin boron nitride nanosheets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal-induced%20irreversible%20straining%20of%20ultrathin%20boron%20nitride%20nanosheets&rft.jtitle=Applied%20physics%20letters&rft.au=Qu,%20Wenyang&rft.date=2019-02-04&rft.volume=114&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5083960&rft_dat=%3Cproquest_cross%3E2175685034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175685034&rft_id=info:pmid/&rfr_iscdi=true |