A physical model for solving the dredging thermal protection system of hypersonic vehicle leading edge
The dredging thermal protection system is considered as a thermal protection method to prevent hypersonic vehicles whose leading edges work in the serious aerodynamic heating that seriously affects the performance and safety of the aircraft. This paper uses a special matrix splitting scheme and a hi...
Gespeichert in:
Veröffentlicht in: | AIP advances 2019-02, Vol.9 (2), p.025203-025203-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 025203-12 |
---|---|
container_issue | 2 |
container_start_page | 025203 |
container_title | AIP advances |
container_volume | 9 |
creator | Sun, Junjun Zhu, Qingyong |
description | The dredging thermal protection system is considered as a thermal protection method to prevent hypersonic vehicles whose leading edges work in the serious aerodynamic heating that seriously affects the performance and safety of the aircraft. This paper uses a special matrix splitting scheme and a high order accurate upwind compact difference scheme with group velocity control to solve the three-dimensional unsteady governing equations of the leading edge of the hypersonic vehicle. Fractal theory is introduced into the heat pipe wick model. The governing equation of the porosity of liquid components in the wick is derived. On the gas-liquid interface in the heat pipe, the temperature and pressure of the interface are determined by the Clapeyron equation that characterizing the relationship between saturation temperature and saturation pressure, assuming the temperature is the local saturation temperature. The distributions of temperature and density under the condition of different wedge half angles and heat pipes are studied by the coupled numerical simulation of the outer flow region of the aircraft and the internal region of heat pipes. The numerical results show that the high order accurate coupled computational method is reasonable and feasible. |
doi_str_mv | 10.1063/1.5083820 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5083820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ba31e4c936894ca2a3b4db8a1c6a511f</doaj_id><sourcerecordid>2176518868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-de51405590c5e8920840a837639826fa78b5677bafcfa9b3860f8acdbdbbaeb53</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRsNQe_AcBTwqtyWaTzR5L8QsKXvQcJsmk3bJtarIt9N-b2iKenEtmwjPvvMkUxS2jE0Ylf2QTQRVXJb0oBiUTaszLUl7-ya-LUUormqNqGFXVoPBTsl0eUmuhI-vgsCM-RJJCt283C9IvkbiIbnEu4jpj2xh6tH0bNiQdUo9rEjxZHrYYU9i0luxx2doOSYfgjn25HW-KKw9dwtH5HBafz08fs9fx_P3lbTadjy1veD92KFhFhWioFaiaMlukoHgteaNK6aFWRsi6NuCth8ZwJalXYJ1xxgAawYfF20nXBVjpbWzXEA86QKt_LkJcaIj90Z42wBlWtuFSNZWFEripnFHArATBmM9adyet_OCvHaZer8IubrJ9XbJaCqaUVJm6P1E2hpQi-t-pjOrjVjTT561k9uHEJtv2cPzBf-BvRyGMvA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176518868</pqid></control><display><type>article</type><title>A physical model for solving the dredging thermal protection system of hypersonic vehicle leading edge</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Junjun ; Zhu, Qingyong</creator><creatorcontrib>Sun, Junjun ; Zhu, Qingyong</creatorcontrib><description>The dredging thermal protection system is considered as a thermal protection method to prevent hypersonic vehicles whose leading edges work in the serious aerodynamic heating that seriously affects the performance and safety of the aircraft. This paper uses a special matrix splitting scheme and a high order accurate upwind compact difference scheme with group velocity control to solve the three-dimensional unsteady governing equations of the leading edge of the hypersonic vehicle. Fractal theory is introduced into the heat pipe wick model. The governing equation of the porosity of liquid components in the wick is derived. On the gas-liquid interface in the heat pipe, the temperature and pressure of the interface are determined by the Clapeyron equation that characterizing the relationship between saturation temperature and saturation pressure, assuming the temperature is the local saturation temperature. The distributions of temperature and density under the condition of different wedge half angles and heat pipes are studied by the coupled numerical simulation of the outer flow region of the aircraft and the internal region of heat pipes. The numerical results show that the high order accurate coupled computational method is reasonable and feasible.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/1.5083820</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamic heating ; Aircraft ; Aircraft safety ; Computer simulation ; Dredging ; Group velocity ; Heat ; Heat pipes ; Hypersonic vehicles ; Leading edges ; Mathematical models ; Porosity ; Saturation ; Thermal protection</subject><ispartof>AIP advances, 2019-02, Vol.9 (2), p.025203-025203-12</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-de51405590c5e8920840a837639826fa78b5677bafcfa9b3860f8acdbdbbaeb53</citedby><cites>FETCH-LOGICAL-c393t-de51405590c5e8920840a837639826fa78b5677bafcfa9b3860f8acdbdbbaeb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Junjun</creatorcontrib><creatorcontrib>Zhu, Qingyong</creatorcontrib><title>A physical model for solving the dredging thermal protection system of hypersonic vehicle leading edge</title><title>AIP advances</title><description>The dredging thermal protection system is considered as a thermal protection method to prevent hypersonic vehicles whose leading edges work in the serious aerodynamic heating that seriously affects the performance and safety of the aircraft. This paper uses a special matrix splitting scheme and a high order accurate upwind compact difference scheme with group velocity control to solve the three-dimensional unsteady governing equations of the leading edge of the hypersonic vehicle. Fractal theory is introduced into the heat pipe wick model. The governing equation of the porosity of liquid components in the wick is derived. On the gas-liquid interface in the heat pipe, the temperature and pressure of the interface are determined by the Clapeyron equation that characterizing the relationship between saturation temperature and saturation pressure, assuming the temperature is the local saturation temperature. The distributions of temperature and density under the condition of different wedge half angles and heat pipes are studied by the coupled numerical simulation of the outer flow region of the aircraft and the internal region of heat pipes. The numerical results show that the high order accurate coupled computational method is reasonable and feasible.</description><subject>Aerodynamic heating</subject><subject>Aircraft</subject><subject>Aircraft safety</subject><subject>Computer simulation</subject><subject>Dredging</subject><subject>Group velocity</subject><subject>Heat</subject><subject>Heat pipes</subject><subject>Hypersonic vehicles</subject><subject>Leading edges</subject><subject>Mathematical models</subject><subject>Porosity</subject><subject>Saturation</subject><subject>Thermal protection</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LAzEQhhdRsNQe_AcBTwqtyWaTzR5L8QsKXvQcJsmk3bJtarIt9N-b2iKenEtmwjPvvMkUxS2jE0Ylf2QTQRVXJb0oBiUTaszLUl7-ya-LUUormqNqGFXVoPBTsl0eUmuhI-vgsCM-RJJCt283C9IvkbiIbnEu4jpj2xh6tH0bNiQdUo9rEjxZHrYYU9i0luxx2doOSYfgjn25HW-KKw9dwtH5HBafz08fs9fx_P3lbTadjy1veD92KFhFhWioFaiaMlukoHgteaNK6aFWRsi6NuCth8ZwJalXYJ1xxgAawYfF20nXBVjpbWzXEA86QKt_LkJcaIj90Z42wBlWtuFSNZWFEripnFHArATBmM9adyet_OCvHaZer8IubrJ9XbJaCqaUVJm6P1E2hpQi-t-pjOrjVjTT561k9uHEJtv2cPzBf-BvRyGMvA</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Sun, Junjun</creator><creator>Zhu, Qingyong</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>201902</creationdate><title>A physical model for solving the dredging thermal protection system of hypersonic vehicle leading edge</title><author>Sun, Junjun ; Zhu, Qingyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-de51405590c5e8920840a837639826fa78b5677bafcfa9b3860f8acdbdbbaeb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamic heating</topic><topic>Aircraft</topic><topic>Aircraft safety</topic><topic>Computer simulation</topic><topic>Dredging</topic><topic>Group velocity</topic><topic>Heat</topic><topic>Heat pipes</topic><topic>Hypersonic vehicles</topic><topic>Leading edges</topic><topic>Mathematical models</topic><topic>Porosity</topic><topic>Saturation</topic><topic>Thermal protection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Junjun</creatorcontrib><creatorcontrib>Zhu, Qingyong</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Junjun</au><au>Zhu, Qingyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physical model for solving the dredging thermal protection system of hypersonic vehicle leading edge</atitle><jtitle>AIP advances</jtitle><date>2019-02</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>025203</spage><epage>025203-12</epage><pages>025203-025203-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The dredging thermal protection system is considered as a thermal protection method to prevent hypersonic vehicles whose leading edges work in the serious aerodynamic heating that seriously affects the performance and safety of the aircraft. This paper uses a special matrix splitting scheme and a high order accurate upwind compact difference scheme with group velocity control to solve the three-dimensional unsteady governing equations of the leading edge of the hypersonic vehicle. Fractal theory is introduced into the heat pipe wick model. The governing equation of the porosity of liquid components in the wick is derived. On the gas-liquid interface in the heat pipe, the temperature and pressure of the interface are determined by the Clapeyron equation that characterizing the relationship between saturation temperature and saturation pressure, assuming the temperature is the local saturation temperature. The distributions of temperature and density under the condition of different wedge half angles and heat pipes are studied by the coupled numerical simulation of the outer flow region of the aircraft and the internal region of heat pipes. The numerical results show that the high order accurate coupled computational method is reasonable and feasible.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5083820</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2019-02, Vol.9 (2), p.025203-025203-12 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5083820 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aerodynamic heating Aircraft Aircraft safety Computer simulation Dredging Group velocity Heat Heat pipes Hypersonic vehicles Leading edges Mathematical models Porosity Saturation Thermal protection |
title | A physical model for solving the dredging thermal protection system of hypersonic vehicle leading edge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physical%20model%20for%20solving%20the%20dredging%20thermal%20protection%20system%20of%20hypersonic%20vehicle%20leading%20edge&rft.jtitle=AIP%20advances&rft.au=Sun,%20Junjun&rft.date=2019-02&rft.volume=9&rft.issue=2&rft.spage=025203&rft.epage=025203-12&rft.pages=025203-025203-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/1.5083820&rft_dat=%3Cproquest_cross%3E2176518868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2176518868&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ba31e4c936894ca2a3b4db8a1c6a511f&rfr_iscdi=true |