Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor

In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-06, Vol.125 (21)
Hauptverfasser: Banerjee, Amit, Satoh, Hiroaki, Elamaran, Durgadevi, Sharma, Yash, Hiromoto, Norihisa, Inokawa, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 125
creator Banerjee, Amit
Satoh, Hiroaki
Elamaran, Durgadevi
Sharma, Yash
Hiromoto, Norihisa
Inokawa, Hiroshi
description In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was 1.85 × 10 − 10 W / Hz at Ib = 50 μA and 1.58 × 10 − 10 W / Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays.
doi_str_mv 10.1063/1.5083643
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5083643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235337966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-f8a9ce58741f2128261127b957ba3fcdbc8516d1da23139de8ba58e2435cd64b3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfGx2s0cpfkFBD3oO2WzSpjRJTbKF-uuNtODd08DMMzM8LwDXGM0waug9njHEaVPTEzDBiHdVyxg6BROECK5413bn4CKlNUIYc9pNwP5dRxOik15paN02hp122mcYDAy-Uiu7hdZnvYyy32iYdZQrHfM3dFbF0IdNcLo0oYxR7hMck_VL6KUPScnCOy39UMbZZunt6GAu286mHOIlODNyk_TVsU7B59Pjx_ylWrw9v84fFpWqaZsrw2WnNONtjQ3BhJMGY9L2HWt7SY0aesUZbgY8SEIx7QbNe8m4JjVlamjqnk7BzeFucfsadcpiHcboy0tBCGWUtl3TFOr2QBWrlKI2Yhutk3EvMBK_yQosjskW9u7AJlW0sg3-f_AuxD9QbAdDfwAJwYo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235337966</pqid></control><display><type>article</type><title>Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Banerjee, Amit ; Satoh, Hiroaki ; Elamaran, Durgadevi ; Sharma, Yash ; Hiromoto, Norihisa ; Inokawa, Hiroshi</creator><creatorcontrib>Banerjee, Amit ; Satoh, Hiroaki ; Elamaran, Durgadevi ; Sharma, Yash ; Hiromoto, Norihisa ; Inokawa, Hiroshi</creatorcontrib><description>In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was 1.85 × 10 − 10 W / Hz at Ib = 50 μA and 1.58 × 10 − 10 W / Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5083643</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antenna arrays ; Applied physics ; Devices ; Electrical resistivity ; Grain size ; Mathematical analysis ; Miniaturization ; Silicon dioxide ; Substrates ; Terahertz frequencies ; Thermistors ; Titanium</subject><ispartof>Journal of applied physics, 2019-06, Vol.125 (21)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-f8a9ce58741f2128261127b957ba3fcdbc8516d1da23139de8ba58e2435cd64b3</citedby><cites>FETCH-LOGICAL-c437t-f8a9ce58741f2128261127b957ba3fcdbc8516d1da23139de8ba58e2435cd64b3</cites><orcidid>0000-0002-5868-0219 ; 0000-0002-8647-3524 ; 0000-0001-9612-4523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5083643$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Banerjee, Amit</creatorcontrib><creatorcontrib>Satoh, Hiroaki</creatorcontrib><creatorcontrib>Elamaran, Durgadevi</creatorcontrib><creatorcontrib>Sharma, Yash</creatorcontrib><creatorcontrib>Hiromoto, Norihisa</creatorcontrib><creatorcontrib>Inokawa, Hiroshi</creatorcontrib><title>Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor</title><title>Journal of applied physics</title><description>In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was 1.85 × 10 − 10 W / Hz at Ib = 50 μA and 1.58 × 10 − 10 W / Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays.</description><subject>Antenna arrays</subject><subject>Applied physics</subject><subject>Devices</subject><subject>Electrical resistivity</subject><subject>Grain size</subject><subject>Mathematical analysis</subject><subject>Miniaturization</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><subject>Thermistors</subject><subject>Titanium</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfGx2s0cpfkFBD3oO2WzSpjRJTbKF-uuNtODd08DMMzM8LwDXGM0waug9njHEaVPTEzDBiHdVyxg6BROECK5413bn4CKlNUIYc9pNwP5dRxOik15paN02hp122mcYDAy-Uiu7hdZnvYyy32iYdZQrHfM3dFbF0IdNcLo0oYxR7hMck_VL6KUPScnCOy39UMbZZunt6GAu286mHOIlODNyk_TVsU7B59Pjx_ylWrw9v84fFpWqaZsrw2WnNONtjQ3BhJMGY9L2HWt7SY0aesUZbgY8SEIx7QbNe8m4JjVlamjqnk7BzeFucfsadcpiHcboy0tBCGWUtl3TFOr2QBWrlKI2Yhutk3EvMBK_yQosjskW9u7AJlW0sg3-f_AuxD9QbAdDfwAJwYo1</recordid><startdate>20190607</startdate><enddate>20190607</enddate><creator>Banerjee, Amit</creator><creator>Satoh, Hiroaki</creator><creator>Elamaran, Durgadevi</creator><creator>Sharma, Yash</creator><creator>Hiromoto, Norihisa</creator><creator>Inokawa, Hiroshi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5868-0219</orcidid><orcidid>https://orcid.org/0000-0002-8647-3524</orcidid><orcidid>https://orcid.org/0000-0001-9612-4523</orcidid></search><sort><creationdate>20190607</creationdate><title>Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor</title><author>Banerjee, Amit ; Satoh, Hiroaki ; Elamaran, Durgadevi ; Sharma, Yash ; Hiromoto, Norihisa ; Inokawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-f8a9ce58741f2128261127b957ba3fcdbc8516d1da23139de8ba58e2435cd64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna arrays</topic><topic>Applied physics</topic><topic>Devices</topic><topic>Electrical resistivity</topic><topic>Grain size</topic><topic>Mathematical analysis</topic><topic>Miniaturization</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><topic>Thermistors</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Amit</creatorcontrib><creatorcontrib>Satoh, Hiroaki</creatorcontrib><creatorcontrib>Elamaran, Durgadevi</creatorcontrib><creatorcontrib>Sharma, Yash</creatorcontrib><creatorcontrib>Hiromoto, Norihisa</creatorcontrib><creatorcontrib>Inokawa, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Amit</au><au>Satoh, Hiroaki</au><au>Elamaran, Durgadevi</au><au>Sharma, Yash</au><au>Hiromoto, Norihisa</au><au>Inokawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor</atitle><jtitle>Journal of applied physics</jtitle><date>2019-06-07</date><risdate>2019</risdate><volume>125</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was 1.85 × 10 − 10 W / Hz at Ib = 50 μA and 1.58 × 10 − 10 W / Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5083643</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5868-0219</orcidid><orcidid>https://orcid.org/0000-0002-8647-3524</orcidid><orcidid>https://orcid.org/0000-0001-9612-4523</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-06, Vol.125 (21)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_5083643
source AIP Journals Complete; Alma/SFX Local Collection
subjects Antenna arrays
Applied physics
Devices
Electrical resistivity
Grain size
Mathematical analysis
Miniaturization
Silicon dioxide
Substrates
Terahertz frequencies
Thermistors
Titanium
title Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20improvement%20of%20on-chip%20integrable%20terahertz%20microbolometer%20arrays%20using%20nanoscale%20meander%20titanium%20thermistor&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Banerjee,%20Amit&rft.date=2019-06-07&rft.volume=125&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5083643&rft_dat=%3Cproquest_cross%3E2235337966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235337966&rft_id=info:pmid/&rfr_iscdi=true