Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor
In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded d...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019-06, Vol.125 (21) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 125 |
creator | Banerjee, Amit Satoh, Hiroaki Elamaran, Durgadevi Sharma, Yash Hiromoto, Norihisa Inokawa, Hiroshi |
description | In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was
1.85
×
10
−
10
W
/
Hz at Ib = 50 μA and
1.58
×
10
−
10
W
/
Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays. |
doi_str_mv | 10.1063/1.5083643 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5083643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235337966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-f8a9ce58741f2128261127b957ba3fcdbc8516d1da23139de8ba58e2435cd64b3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfGx2s0cpfkFBD3oO2WzSpjRJTbKF-uuNtODd08DMMzM8LwDXGM0waug9njHEaVPTEzDBiHdVyxg6BROECK5413bn4CKlNUIYc9pNwP5dRxOik15paN02hp122mcYDAy-Uiu7hdZnvYyy32iYdZQrHfM3dFbF0IdNcLo0oYxR7hMck_VL6KUPScnCOy39UMbZZunt6GAu286mHOIlODNyk_TVsU7B59Pjx_ylWrw9v84fFpWqaZsrw2WnNONtjQ3BhJMGY9L2HWt7SY0aesUZbgY8SEIx7QbNe8m4JjVlamjqnk7BzeFucfsadcpiHcboy0tBCGWUtl3TFOr2QBWrlKI2Yhutk3EvMBK_yQosjskW9u7AJlW0sg3-f_AuxD9QbAdDfwAJwYo1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235337966</pqid></control><display><type>article</type><title>Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Banerjee, Amit ; Satoh, Hiroaki ; Elamaran, Durgadevi ; Sharma, Yash ; Hiromoto, Norihisa ; Inokawa, Hiroshi</creator><creatorcontrib>Banerjee, Amit ; Satoh, Hiroaki ; Elamaran, Durgadevi ; Sharma, Yash ; Hiromoto, Norihisa ; Inokawa, Hiroshi</creatorcontrib><description>In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was
1.85
×
10
−
10
W
/
Hz at Ib = 50 μA and
1.58
×
10
−
10
W
/
Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5083643</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antenna arrays ; Applied physics ; Devices ; Electrical resistivity ; Grain size ; Mathematical analysis ; Miniaturization ; Silicon dioxide ; Substrates ; Terahertz frequencies ; Thermistors ; Titanium</subject><ispartof>Journal of applied physics, 2019-06, Vol.125 (21)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-f8a9ce58741f2128261127b957ba3fcdbc8516d1da23139de8ba58e2435cd64b3</citedby><cites>FETCH-LOGICAL-c437t-f8a9ce58741f2128261127b957ba3fcdbc8516d1da23139de8ba58e2435cd64b3</cites><orcidid>0000-0002-5868-0219 ; 0000-0002-8647-3524 ; 0000-0001-9612-4523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5083643$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Banerjee, Amit</creatorcontrib><creatorcontrib>Satoh, Hiroaki</creatorcontrib><creatorcontrib>Elamaran, Durgadevi</creatorcontrib><creatorcontrib>Sharma, Yash</creatorcontrib><creatorcontrib>Hiromoto, Norihisa</creatorcontrib><creatorcontrib>Inokawa, Hiroshi</creatorcontrib><title>Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor</title><title>Journal of applied physics</title><description>In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was
1.85
×
10
−
10
W
/
Hz at Ib = 50 μA and
1.58
×
10
−
10
W
/
Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays.</description><subject>Antenna arrays</subject><subject>Applied physics</subject><subject>Devices</subject><subject>Electrical resistivity</subject><subject>Grain size</subject><subject>Mathematical analysis</subject><subject>Miniaturization</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><subject>Thermistors</subject><subject>Titanium</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWfGx2s0cpfkFBD3oO2WzSpjRJTbKF-uuNtODd08DMMzM8LwDXGM0waug9njHEaVPTEzDBiHdVyxg6BROECK5413bn4CKlNUIYc9pNwP5dRxOik15paN02hp122mcYDAy-Uiu7hdZnvYyy32iYdZQrHfM3dFbF0IdNcLo0oYxR7hMck_VL6KUPScnCOy39UMbZZunt6GAu286mHOIlODNyk_TVsU7B59Pjx_ylWrw9v84fFpWqaZsrw2WnNONtjQ3BhJMGY9L2HWt7SY0aesUZbgY8SEIx7QbNe8m4JjVlamjqnk7BzeFucfsadcpiHcboy0tBCGWUtl3TFOr2QBWrlKI2Yhutk3EvMBK_yQosjskW9u7AJlW0sg3-f_AuxD9QbAdDfwAJwYo1</recordid><startdate>20190607</startdate><enddate>20190607</enddate><creator>Banerjee, Amit</creator><creator>Satoh, Hiroaki</creator><creator>Elamaran, Durgadevi</creator><creator>Sharma, Yash</creator><creator>Hiromoto, Norihisa</creator><creator>Inokawa, Hiroshi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5868-0219</orcidid><orcidid>https://orcid.org/0000-0002-8647-3524</orcidid><orcidid>https://orcid.org/0000-0001-9612-4523</orcidid></search><sort><creationdate>20190607</creationdate><title>Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor</title><author>Banerjee, Amit ; Satoh, Hiroaki ; Elamaran, Durgadevi ; Sharma, Yash ; Hiromoto, Norihisa ; Inokawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-f8a9ce58741f2128261127b957ba3fcdbc8516d1da23139de8ba58e2435cd64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna arrays</topic><topic>Applied physics</topic><topic>Devices</topic><topic>Electrical resistivity</topic><topic>Grain size</topic><topic>Mathematical analysis</topic><topic>Miniaturization</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><topic>Thermistors</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Amit</creatorcontrib><creatorcontrib>Satoh, Hiroaki</creatorcontrib><creatorcontrib>Elamaran, Durgadevi</creatorcontrib><creatorcontrib>Sharma, Yash</creatorcontrib><creatorcontrib>Hiromoto, Norihisa</creatorcontrib><creatorcontrib>Inokawa, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Amit</au><au>Satoh, Hiroaki</au><au>Elamaran, Durgadevi</au><au>Sharma, Yash</au><au>Hiromoto, Norihisa</au><au>Inokawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor</atitle><jtitle>Journal of applied physics</jtitle><date>2019-06-07</date><risdate>2019</risdate><volume>125</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this study, uncooled antenna-coupled microbolometer arrays were fabricated to detect terahertz waves by using nanoscale meander-shaped Ti thermistors with design widths of DW = 0.1 and 0.2 μm, respectively, on SiO2 and SiNx substrates. Each unit device with a thermistor with DW = 0.1 μm yielded double the electrical responsivity (787 V/W) of unit devices with thermistors with DW = 0.2 μm (386 V/W) at the maximum allowable bias current (Ib = 50 for DW = 0.1 μm and 100 μA for DW = 0.2 μm, respectively). However, the calculated noise-equivalent power (NEP) of unit devices with thermistors with DW = 0.1 μm was
1.85
×
10
−
10
W
/
Hz at Ib = 50 μA and
1.58
×
10
−
10
W
/
Hz at Ib = 100 μA for unit devices with thermistors with DW = 0.2 μm. Hence, the reduction in DW did not lead to an improvement in NEP. This study validates our previous investigation into the effect of width on such device parameters such as the temperature coefficient of resistance (TCR) and resistivity in the context of device miniaturization. The smaller grain size in thinner metal interconnects (thermistors) can be linked to the lower TCR and increased resistivity of the devices. Thus, the enhancement in responsivity in the design was largely due to the nanoscale meander design that, however, was detrimental to the noise response of the devices. These devices with nanoscale Ti meander thermistors deliver high responsivity in unit devices with scope for further miniaturization and have significant potential for application as on-chip integrable detector arrays.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5083643</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5868-0219</orcidid><orcidid>https://orcid.org/0000-0002-8647-3524</orcidid><orcidid>https://orcid.org/0000-0001-9612-4523</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2019-06, Vol.125 (21) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5083643 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Antenna arrays Applied physics Devices Electrical resistivity Grain size Mathematical analysis Miniaturization Silicon dioxide Substrates Terahertz frequencies Thermistors Titanium |
title | Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20improvement%20of%20on-chip%20integrable%20terahertz%20microbolometer%20arrays%20using%20nanoscale%20meander%20titanium%20thermistor&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Banerjee,%20Amit&rft.date=2019-06-07&rft.volume=125&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5083643&rft_dat=%3Cproquest_cross%3E2235337966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235337966&rft_id=info:pmid/&rfr_iscdi=true |