Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion
A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2019-02, Vol.26 (2) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 26 |
creator | Davies, J. R. Barnak, D. H. Betti, R. Campbell, E. M. Glebov, V. Yu Hansen, E. C. Knauer, J. P. Peebles, J. L. Sefkow, A. B. |
description | A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross-section with collisional slowing down of the tritium must be small, requiring
ρR≪15T keV3/2 mg/cm2, where TkeV is the electron temperature in keV. The technique is applied to the results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ∼10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements. |
doi_str_mv | 10.1063/1.5082960 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5082960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178424620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-17c6d85ce9212eea9b2f254a20305255447b8fa4c7805028ab695b58f669e5423</originalsourceid><addsrcrecordid>eNp9kE9LRCEUxSUKqqlF30BqVfBKHfXpMqJ_ELQpaCeO71rWG53UF0yfvjdM1CJoc-9d_DjnnoPQASWnlMjpGT0VRDEtyQbaoUTpppUt31zdLWmk5E_baLeUV0IIl0LtoLfb6CHnEJ-xH6DHNoPtcQexhLrEPqc5LuBS7Gxe4ghDzSniZYC-KzhE3NsCuely-ICI5_Y5Qg2f0OE-RMh4NWoY9fxQQop7aMvbvsD-956gx6vLh4ub5u7--vbi_K5xU6VrQ1snOyUcaEYZgNUz5pnglpEpEUwIztuZ8pa7VhFBmLIzqcVMKC-lBsHZdIIO17qp1GCKCxXcy5ghgquGcq1Iq0foaA0tcnofoFTzmoYcx78Mo63ijMvRcIKO15TLqZQM3ixymI9dGErMqnBDzXfhI3uyZleOto6Bf-CPlH9Bs-j8f_Bf5S_8lo7q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178424620</pqid></control><display><type>article</type><title>Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Davies, J. R. ; Barnak, D. H. ; Betti, R. ; Campbell, E. M. ; Glebov, V. Yu ; Hansen, E. C. ; Knauer, J. P. ; Peebles, J. L. ; Sefkow, A. B.</creator><creatorcontrib>Davies, J. R. ; Barnak, D. H. ; Betti, R. ; Campbell, E. M. ; Glebov, V. Yu ; Hansen, E. C. ; Knauer, J. P. ; Peebles, J. L. ; Sefkow, A. B. ; Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><description>A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross-section with collisional slowing down of the tritium must be small, requiring
ρR≪15T keV3/2 mg/cm2, where TkeV is the electron temperature in keV. The technique is applied to the results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ∼10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5082960</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Density ; Deuterium ; Electron energy ; Electrons ; Fluid dynamics ; Fluid flow ; Fuels ; Heating ; Implosions ; Inertial fusion (reactor) ; Lasers ; Magnetic fields ; Magnetic tape ; Magnetohydrodynamic simulation ; Neutrons ; Plasma physics ; Tritium</subject><ispartof>Physics of plasmas, 2019-02, Vol.26 (2)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-17c6d85ce9212eea9b2f254a20305255447b8fa4c7805028ab695b58f669e5423</citedby><cites>FETCH-LOGICAL-c389t-17c6d85ce9212eea9b2f254a20305255447b8fa4c7805028ab695b58f669e5423</cites><orcidid>0000-0002-4646-7517 ; 0000-0001-6488-3277 ; 0000000164883277 ; 0000000246467517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5082960$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1498079$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Davies, J. R.</creatorcontrib><creatorcontrib>Barnak, D. H.</creatorcontrib><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Campbell, E. M.</creatorcontrib><creatorcontrib>Glebov, V. Yu</creatorcontrib><creatorcontrib>Hansen, E. C.</creatorcontrib><creatorcontrib>Knauer, J. P.</creatorcontrib><creatorcontrib>Peebles, J. L.</creatorcontrib><creatorcontrib>Sefkow, A. B.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><title>Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion</title><title>Physics of plasmas</title><description>A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross-section with collisional slowing down of the tritium must be small, requiring
ρR≪15T keV3/2 mg/cm2, where TkeV is the electron temperature in keV. The technique is applied to the results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ∼10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements.</description><subject>Density</subject><subject>Deuterium</subject><subject>Electron energy</subject><subject>Electrons</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fuels</subject><subject>Heating</subject><subject>Implosions</subject><subject>Inertial fusion (reactor)</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Magnetic tape</subject><subject>Magnetohydrodynamic simulation</subject><subject>Neutrons</subject><subject>Plasma physics</subject><subject>Tritium</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LRCEUxSUKqqlF30BqVfBKHfXpMqJ_ELQpaCeO71rWG53UF0yfvjdM1CJoc-9d_DjnnoPQASWnlMjpGT0VRDEtyQbaoUTpppUt31zdLWmk5E_baLeUV0IIl0LtoLfb6CHnEJ-xH6DHNoPtcQexhLrEPqc5LuBS7Gxe4ghDzSniZYC-KzhE3NsCuely-ICI5_Y5Qg2f0OE-RMh4NWoY9fxQQop7aMvbvsD-956gx6vLh4ub5u7--vbi_K5xU6VrQ1snOyUcaEYZgNUz5pnglpEpEUwIztuZ8pa7VhFBmLIzqcVMKC-lBsHZdIIO17qp1GCKCxXcy5ghgquGcq1Iq0foaA0tcnofoFTzmoYcx78Mo63ijMvRcIKO15TLqZQM3ixymI9dGErMqnBDzXfhI3uyZleOto6Bf-CPlH9Bs-j8f_Bf5S_8lo7q</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Davies, J. R.</creator><creator>Barnak, D. H.</creator><creator>Betti, R.</creator><creator>Campbell, E. M.</creator><creator>Glebov, V. Yu</creator><creator>Hansen, E. C.</creator><creator>Knauer, J. P.</creator><creator>Peebles, J. L.</creator><creator>Sefkow, A. B.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4646-7517</orcidid><orcidid>https://orcid.org/0000-0001-6488-3277</orcidid><orcidid>https://orcid.org/0000000164883277</orcidid><orcidid>https://orcid.org/0000000246467517</orcidid></search><sort><creationdate>20190201</creationdate><title>Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion</title><author>Davies, J. R. ; Barnak, D. H. ; Betti, R. ; Campbell, E. M. ; Glebov, V. Yu ; Hansen, E. C. ; Knauer, J. P. ; Peebles, J. L. ; Sefkow, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-17c6d85ce9212eea9b2f254a20305255447b8fa4c7805028ab695b58f669e5423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Density</topic><topic>Deuterium</topic><topic>Electron energy</topic><topic>Electrons</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fuels</topic><topic>Heating</topic><topic>Implosions</topic><topic>Inertial fusion (reactor)</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Magnetic tape</topic><topic>Magnetohydrodynamic simulation</topic><topic>Neutrons</topic><topic>Plasma physics</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davies, J. R.</creatorcontrib><creatorcontrib>Barnak, D. H.</creatorcontrib><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Campbell, E. M.</creatorcontrib><creatorcontrib>Glebov, V. Yu</creatorcontrib><creatorcontrib>Hansen, E. C.</creatorcontrib><creatorcontrib>Knauer, J. P.</creatorcontrib><creatorcontrib>Peebles, J. L.</creatorcontrib><creatorcontrib>Sefkow, A. B.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, J. R.</au><au>Barnak, D. H.</au><au>Betti, R.</au><au>Campbell, E. M.</au><au>Glebov, V. Yu</au><au>Hansen, E. C.</au><au>Knauer, J. P.</au><au>Peebles, J. L.</au><au>Sefkow, A. B.</au><aucorp>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion</atitle><jtitle>Physics of plasmas</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>26</volume><issue>2</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross-section with collisional slowing down of the tritium must be small, requiring
ρR≪15T keV3/2 mg/cm2, where TkeV is the electron temperature in keV. The technique is applied to the results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ∼10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5082960</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4646-7517</orcidid><orcidid>https://orcid.org/0000-0001-6488-3277</orcidid><orcidid>https://orcid.org/0000000164883277</orcidid><orcidid>https://orcid.org/0000000246467517</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2019-02, Vol.26 (2) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_5082960 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Density Deuterium Electron energy Electrons Fluid dynamics Fluid flow Fuels Heating Implosions Inertial fusion (reactor) Lasers Magnetic fields Magnetic tape Magnetohydrodynamic simulation Neutrons Plasma physics Tritium |
title | Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20fuel%20areal%20density%20from%20secondary%20neutron%20yields%20in%20laser-driven%20magnetized%20liner%20inertial%20fusion&rft.jtitle=Physics%20of%20plasmas&rft.au=Davies,%20J.%20R.&rft.aucorp=Univ.%20of%20Rochester,%20NY%20(United%20States).%20Lab.%20for%20Laser%20Energetics&rft.date=2019-02-01&rft.volume=26&rft.issue=2&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5082960&rft_dat=%3Cproquest_cross%3E2178424620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178424620&rft_id=info:pmid/&rfr_iscdi=true |