Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion

A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2019-02, Vol.26 (2)
Hauptverfasser: Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Glebov, V. Yu, Hansen, E. C., Knauer, J. P., Peebles, J. L., Sefkow, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physics of plasmas
container_volume 26
creator Davies, J. R.
Barnak, D. H.
Betti, R.
Campbell, E. M.
Glebov, V. Yu
Hansen, E. C.
Knauer, J. P.
Peebles, J. L.
Sefkow, A. B.
description A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross-section with collisional slowing down of the tritium must be small, requiring ρR≪15T keV3/2 mg/cm2, where TkeV is the electron temperature in keV. The technique is applied to the results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ∼10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements.
doi_str_mv 10.1063/1.5082960
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5082960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178424620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-17c6d85ce9212eea9b2f254a20305255447b8fa4c7805028ab695b58f669e5423</originalsourceid><addsrcrecordid>eNp9kE9LRCEUxSUKqqlF30BqVfBKHfXpMqJ_ELQpaCeO71rWG53UF0yfvjdM1CJoc-9d_DjnnoPQASWnlMjpGT0VRDEtyQbaoUTpppUt31zdLWmk5E_baLeUV0IIl0LtoLfb6CHnEJ-xH6DHNoPtcQexhLrEPqc5LuBS7Gxe4ghDzSniZYC-KzhE3NsCuely-ICI5_Y5Qg2f0OE-RMh4NWoY9fxQQop7aMvbvsD-956gx6vLh4ub5u7--vbi_K5xU6VrQ1snOyUcaEYZgNUz5pnglpEpEUwIztuZ8pa7VhFBmLIzqcVMKC-lBsHZdIIO17qp1GCKCxXcy5ghgquGcq1Iq0foaA0tcnofoFTzmoYcx78Mo63ijMvRcIKO15TLqZQM3ixymI9dGErMqnBDzXfhI3uyZleOto6Bf-CPlH9Bs-j8f_Bf5S_8lo7q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178424620</pqid></control><display><type>article</type><title>Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Davies, J. R. ; Barnak, D. H. ; Betti, R. ; Campbell, E. M. ; Glebov, V. Yu ; Hansen, E. C. ; Knauer, J. P. ; Peebles, J. L. ; Sefkow, A. B.</creator><creatorcontrib>Davies, J. R. ; Barnak, D. H. ; Betti, R. ; Campbell, E. M. ; Glebov, V. Yu ; Hansen, E. C. ; Knauer, J. P. ; Peebles, J. L. ; Sefkow, A. B. ; Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><description>A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross-section with collisional slowing down of the tritium must be small, requiring ρR≪15T keV3/2 mg/cm2, where TkeV is the electron temperature in keV. The technique is applied to the results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ∼10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5082960</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Density ; Deuterium ; Electron energy ; Electrons ; Fluid dynamics ; Fluid flow ; Fuels ; Heating ; Implosions ; Inertial fusion (reactor) ; Lasers ; Magnetic fields ; Magnetic tape ; Magnetohydrodynamic simulation ; Neutrons ; Plasma physics ; Tritium</subject><ispartof>Physics of plasmas, 2019-02, Vol.26 (2)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-17c6d85ce9212eea9b2f254a20305255447b8fa4c7805028ab695b58f669e5423</citedby><cites>FETCH-LOGICAL-c389t-17c6d85ce9212eea9b2f254a20305255447b8fa4c7805028ab695b58f669e5423</cites><orcidid>0000-0002-4646-7517 ; 0000-0001-6488-3277 ; 0000000164883277 ; 0000000246467517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5082960$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1498079$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Davies, J. R.</creatorcontrib><creatorcontrib>Barnak, D. H.</creatorcontrib><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Campbell, E. M.</creatorcontrib><creatorcontrib>Glebov, V. Yu</creatorcontrib><creatorcontrib>Hansen, E. C.</creatorcontrib><creatorcontrib>Knauer, J. P.</creatorcontrib><creatorcontrib>Peebles, J. L.</creatorcontrib><creatorcontrib>Sefkow, A. B.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><title>Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion</title><title>Physics of plasmas</title><description>A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross-section with collisional slowing down of the tritium must be small, requiring ρR≪15T keV3/2 mg/cm2, where TkeV is the electron temperature in keV. The technique is applied to the results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ∼10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements.</description><subject>Density</subject><subject>Deuterium</subject><subject>Electron energy</subject><subject>Electrons</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fuels</subject><subject>Heating</subject><subject>Implosions</subject><subject>Inertial fusion (reactor)</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Magnetic tape</subject><subject>Magnetohydrodynamic simulation</subject><subject>Neutrons</subject><subject>Plasma physics</subject><subject>Tritium</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LRCEUxSUKqqlF30BqVfBKHfXpMqJ_ELQpaCeO71rWG53UF0yfvjdM1CJoc-9d_DjnnoPQASWnlMjpGT0VRDEtyQbaoUTpppUt31zdLWmk5E_baLeUV0IIl0LtoLfb6CHnEJ-xH6DHNoPtcQexhLrEPqc5LuBS7Gxe4ghDzSniZYC-KzhE3NsCuely-ICI5_Y5Qg2f0OE-RMh4NWoY9fxQQop7aMvbvsD-956gx6vLh4ub5u7--vbi_K5xU6VrQ1snOyUcaEYZgNUz5pnglpEpEUwIztuZ8pa7VhFBmLIzqcVMKC-lBsHZdIIO17qp1GCKCxXcy5ghgquGcq1Iq0foaA0tcnofoFTzmoYcx78Mo63ijMvRcIKO15TLqZQM3ixymI9dGErMqnBDzXfhI3uyZleOto6Bf-CPlH9Bs-j8f_Bf5S_8lo7q</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Davies, J. R.</creator><creator>Barnak, D. H.</creator><creator>Betti, R.</creator><creator>Campbell, E. M.</creator><creator>Glebov, V. Yu</creator><creator>Hansen, E. C.</creator><creator>Knauer, J. P.</creator><creator>Peebles, J. L.</creator><creator>Sefkow, A. B.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4646-7517</orcidid><orcidid>https://orcid.org/0000-0001-6488-3277</orcidid><orcidid>https://orcid.org/0000000164883277</orcidid><orcidid>https://orcid.org/0000000246467517</orcidid></search><sort><creationdate>20190201</creationdate><title>Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion</title><author>Davies, J. R. ; Barnak, D. H. ; Betti, R. ; Campbell, E. M. ; Glebov, V. Yu ; Hansen, E. C. ; Knauer, J. P. ; Peebles, J. L. ; Sefkow, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-17c6d85ce9212eea9b2f254a20305255447b8fa4c7805028ab695b58f669e5423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Density</topic><topic>Deuterium</topic><topic>Electron energy</topic><topic>Electrons</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fuels</topic><topic>Heating</topic><topic>Implosions</topic><topic>Inertial fusion (reactor)</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Magnetic tape</topic><topic>Magnetohydrodynamic simulation</topic><topic>Neutrons</topic><topic>Plasma physics</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davies, J. R.</creatorcontrib><creatorcontrib>Barnak, D. H.</creatorcontrib><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Campbell, E. M.</creatorcontrib><creatorcontrib>Glebov, V. Yu</creatorcontrib><creatorcontrib>Hansen, E. C.</creatorcontrib><creatorcontrib>Knauer, J. P.</creatorcontrib><creatorcontrib>Peebles, J. L.</creatorcontrib><creatorcontrib>Sefkow, A. B.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, J. R.</au><au>Barnak, D. H.</au><au>Betti, R.</au><au>Campbell, E. M.</au><au>Glebov, V. Yu</au><au>Hansen, E. C.</au><au>Knauer, J. P.</au><au>Peebles, J. L.</au><au>Sefkow, A. B.</au><aucorp>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion</atitle><jtitle>Physics of plasmas</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>26</volume><issue>2</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A technique to infer the areal density ρR of compressed deuterium (D) in cylindrical implosions from the ratio of secondary D–T (deuterium–tritium) neutrons to primary D–D neutrons is described and evaluated. For ρR to be proportional to the ratio of D–T to D–D yield, the increase in the D–T fusion cross-section with collisional slowing down of the tritium must be small, requiring ρR≪15T keV3/2 mg/cm2, where TkeV is the electron temperature in keV. The technique is applied to the results from laser-driven magnetized liner inertial fusion (MagLIF) targets on OMEGA, where ρR is certainly less than 4 mg/cm2. OMEGA MagLIF targets do not achieve a sufficiently high, radially integrated, axial magnetic field BR to confine the tritium, as occurs in Z MagLIF targets, because they are ∼10× smaller in radius. The inferred areal densities show that fuel convergence is reduced by preheating, by an applied axial magnetic field, and by increasing the initial fuel density, which are key features of the MagLIF scheme. The results are compared with 1-D and 2-D magnetohydrodynamic simulations for nominal laser and target parameters, which predict areal densities 2× to 3× higher than the measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5082960</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4646-7517</orcidid><orcidid>https://orcid.org/0000-0001-6488-3277</orcidid><orcidid>https://orcid.org/0000000164883277</orcidid><orcidid>https://orcid.org/0000000246467517</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2019-02, Vol.26 (2)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_1_5082960
source AIP Journals Complete; Alma/SFX Local Collection
subjects Density
Deuterium
Electron energy
Electrons
Fluid dynamics
Fluid flow
Fuels
Heating
Implosions
Inertial fusion (reactor)
Lasers
Magnetic fields
Magnetic tape
Magnetohydrodynamic simulation
Neutrons
Plasma physics
Tritium
title Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20fuel%20areal%20density%20from%20secondary%20neutron%20yields%20in%20laser-driven%20magnetized%20liner%20inertial%20fusion&rft.jtitle=Physics%20of%20plasmas&rft.au=Davies,%20J.%20R.&rft.aucorp=Univ.%20of%20Rochester,%20NY%20(United%20States).%20Lab.%20for%20Laser%20Energetics&rft.date=2019-02-01&rft.volume=26&rft.issue=2&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5082960&rft_dat=%3Cproquest_cross%3E2178424620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178424620&rft_id=info:pmid/&rfr_iscdi=true