Static energetics in gravity

A stress-energy tensor, τab, for linear gravity in the physical spacetime, M, approximated by a flat background, M̌, and adapted to the harmonic gauge, was recently proposed by Butcher, Hobson, and Lasenby. By removing gauge constraints and imposing full metrical general relativity, we find a natura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-05, Vol.60 (5), p.52504
Hauptverfasser: Barker, W. E. V., Lasenby, A. N., Hobson, M. P., Handley, W. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 52504
container_title Journal of mathematical physics
container_volume 60
creator Barker, W. E. V.
Lasenby, A. N.
Hobson, M. P.
Handley, W. J.
description A stress-energy tensor, τab, for linear gravity in the physical spacetime, M, approximated by a flat background, M̌, and adapted to the harmonic gauge, was recently proposed by Butcher, Hobson, and Lasenby. By removing gauge constraints and imposing full metrical general relativity, we find a natural generalization of τab to the pseudotensor of Einstein, Etab. Møller’s pseudotensor, Mtab, is an alternative to Etab formulated using tetrads and is thus naturally adapted to, e.g., Einstein-Cartan gravity. Gauge theory gravity uses the geometric algebra to reproduce Einstein-Cartan gravity and is a Poincaré gauge theory for the spacetime algebra: the tetrad and spin connection appear as gauge fields on Minkowski space, M4. We obtain the pseudotensor of Møller for gauge theory gravity, Mt(a), using a variational approach, also identifying a potentially interesting recipe for constructing conserved currents in that theory. We show that in static, spherical spacetimes containing a gravitational mass MT, the pseudotensors in the spacetime algebra, Mt(a) and Et(a), describe gravitational stress-energy as if the gravitational potential were a scalar (i.e., Klein-Gordon) field, φ, coupled to gravitational mass density, ϱ, on the Minkowski background M4. The old Newtonian formula φ = −MT/r successfully describes even strong fields in this picture. The Newtonian limit of this effect was previously observed in τab on M̌ for linear gravity. We also draw fresh attention to the conserved mass of a static system, MTMT. We observe that the gravitational energy of Einstein and Møller was added to MT on M4 to give MT. We demonstrate the Klein-Gordon correspondence and mass functions using the “Schwarzschild star” solution for an incompressible perfect fluid ball.
doi_str_mv 10.1063/1.5082730
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_5082730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224642614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-31991ee32aa69d8d443799d9c19aaa0dc8e543f128d2826add5565753d64e7d93</originalsourceid><addsrcrecordid>eNp9zztLA0EUBeBBFIzRwt5iwUph49w771JCfEDAQq2HYWY2bNDddWYTyL93wwYtBKt7i49zOIRcAp0BlewOZoJqVIwekQlQbUolhT4mE0oRS-Ran5KznNeUAmjOJ-TqtXd97YvYxLSKw5eLuilWyW3rfndOTir3kePF4U7J-8Pibf5ULl8en-f3y9IzVH3JwBiIkaFz0gQdOGfKmGA8GOccDV5HwVkFqANqlC4EIaRQggXJowqGTcn1mNul9msTc2_X7SY1Q6VFRC45SuCDuhmVT23OKVa2S_WnSzsL1O7HW7CH8YO9HW329X5g2_zgbZt-oe1C9R_-m_wNNUVlOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224642614</pqid></control><display><type>article</type><title>Static energetics in gravity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Barker, W. E. V. ; Lasenby, A. N. ; Hobson, M. P. ; Handley, W. J.</creator><creatorcontrib>Barker, W. E. V. ; Lasenby, A. N. ; Hobson, M. P. ; Handley, W. J.</creatorcontrib><description>A stress-energy tensor, τab, for linear gravity in the physical spacetime, M, approximated by a flat background, M̌, and adapted to the harmonic gauge, was recently proposed by Butcher, Hobson, and Lasenby. By removing gauge constraints and imposing full metrical general relativity, we find a natural generalization of τab to the pseudotensor of Einstein, Etab. Møller’s pseudotensor, Mtab, is an alternative to Etab formulated using tetrads and is thus naturally adapted to, e.g., Einstein-Cartan gravity. Gauge theory gravity uses the geometric algebra to reproduce Einstein-Cartan gravity and is a Poincaré gauge theory for the spacetime algebra: the tetrad and spin connection appear as gauge fields on Minkowski space, M4. We obtain the pseudotensor of Møller for gauge theory gravity, Mt(a), using a variational approach, also identifying a potentially interesting recipe for constructing conserved currents in that theory. We show that in static, spherical spacetimes containing a gravitational mass MT, the pseudotensors in the spacetime algebra, Mt(a) and Et(a), describe gravitational stress-energy as if the gravitational potential were a scalar (i.e., Klein-Gordon) field, φ, coupled to gravitational mass density, ϱ, on the Minkowski background M4. The old Newtonian formula φ = −MT/r successfully describes even strong fields in this picture. The Newtonian limit of this effect was previously observed in τab on M̌ for linear gravity. We also draw fresh attention to the conserved mass of a static system, MT&lt;MT. When compared with either ϱ or the density of the Komar mass in the Newtonian limit, MT produces a local virial theorem—such behavior is usually associated with the proper mass of the system, MT&gt;MT. We observe that the gravitational energy of Einstein and Møller was added to MT on M4 to give MT. We demonstrate the Klein-Gordon correspondence and mass functions using the “Schwarzschild star” solution for an incompressible perfect fluid ball.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5082730</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Computational fluid dynamics ; Density ; Energy ; Fluid flow ; Gauge theory ; Gravitation theory ; Gravity ; Incompressible flow ; Mathematical analysis ; Minkowski space ; Physics ; Relativity ; Spacetime ; Tensors ; Virial theorem</subject><ispartof>Journal of mathematical physics, 2019-05, Vol.60 (5), p.52504</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-31991ee32aa69d8d443799d9c19aaa0dc8e543f128d2826add5565753d64e7d93</citedby><cites>FETCH-LOGICAL-c327t-31991ee32aa69d8d443799d9c19aaa0dc8e543f128d2826add5565753d64e7d93</cites><orcidid>0000-0002-8208-6332 ; 0000-0002-5866-0445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5082730$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids></links><search><creatorcontrib>Barker, W. E. V.</creatorcontrib><creatorcontrib>Lasenby, A. N.</creatorcontrib><creatorcontrib>Hobson, M. P.</creatorcontrib><creatorcontrib>Handley, W. J.</creatorcontrib><title>Static energetics in gravity</title><title>Journal of mathematical physics</title><description>A stress-energy tensor, τab, for linear gravity in the physical spacetime, M, approximated by a flat background, M̌, and adapted to the harmonic gauge, was recently proposed by Butcher, Hobson, and Lasenby. By removing gauge constraints and imposing full metrical general relativity, we find a natural generalization of τab to the pseudotensor of Einstein, Etab. Møller’s pseudotensor, Mtab, is an alternative to Etab formulated using tetrads and is thus naturally adapted to, e.g., Einstein-Cartan gravity. Gauge theory gravity uses the geometric algebra to reproduce Einstein-Cartan gravity and is a Poincaré gauge theory for the spacetime algebra: the tetrad and spin connection appear as gauge fields on Minkowski space, M4. We obtain the pseudotensor of Møller for gauge theory gravity, Mt(a), using a variational approach, also identifying a potentially interesting recipe for constructing conserved currents in that theory. We show that in static, spherical spacetimes containing a gravitational mass MT, the pseudotensors in the spacetime algebra, Mt(a) and Et(a), describe gravitational stress-energy as if the gravitational potential were a scalar (i.e., Klein-Gordon) field, φ, coupled to gravitational mass density, ϱ, on the Minkowski background M4. The old Newtonian formula φ = −MT/r successfully describes even strong fields in this picture. The Newtonian limit of this effect was previously observed in τab on M̌ for linear gravity. We also draw fresh attention to the conserved mass of a static system, MT&lt;MT. When compared with either ϱ or the density of the Komar mass in the Newtonian limit, MT produces a local virial theorem—such behavior is usually associated with the proper mass of the system, MT&gt;MT. We observe that the gravitational energy of Einstein and Møller was added to MT on M4 to give MT. We demonstrate the Klein-Gordon correspondence and mass functions using the “Schwarzschild star” solution for an incompressible perfect fluid ball.</description><subject>Algebra</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Energy</subject><subject>Fluid flow</subject><subject>Gauge theory</subject><subject>Gravitation theory</subject><subject>Gravity</subject><subject>Incompressible flow</subject><subject>Mathematical analysis</subject><subject>Minkowski space</subject><subject>Physics</subject><subject>Relativity</subject><subject>Spacetime</subject><subject>Tensors</subject><subject>Virial theorem</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9zztLA0EUBeBBFIzRwt5iwUph49w771JCfEDAQq2HYWY2bNDddWYTyL93wwYtBKt7i49zOIRcAp0BlewOZoJqVIwekQlQbUolhT4mE0oRS-Ran5KznNeUAmjOJ-TqtXd97YvYxLSKw5eLuilWyW3rfndOTir3kePF4U7J-8Pibf5ULl8en-f3y9IzVH3JwBiIkaFz0gQdOGfKmGA8GOccDV5HwVkFqANqlC4EIaRQggXJowqGTcn1mNul9msTc2_X7SY1Q6VFRC45SuCDuhmVT23OKVa2S_WnSzsL1O7HW7CH8YO9HW329X5g2_zgbZt-oe1C9R_-m_wNNUVlOA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Barker, W. E. V.</creator><creator>Lasenby, A. N.</creator><creator>Hobson, M. P.</creator><creator>Handley, W. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8208-6332</orcidid><orcidid>https://orcid.org/0000-0002-5866-0445</orcidid></search><sort><creationdate>201905</creationdate><title>Static energetics in gravity</title><author>Barker, W. E. V. ; Lasenby, A. N. ; Hobson, M. P. ; Handley, W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-31991ee32aa69d8d443799d9c19aaa0dc8e543f128d2826add5565753d64e7d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Energy</topic><topic>Fluid flow</topic><topic>Gauge theory</topic><topic>Gravitation theory</topic><topic>Gravity</topic><topic>Incompressible flow</topic><topic>Mathematical analysis</topic><topic>Minkowski space</topic><topic>Physics</topic><topic>Relativity</topic><topic>Spacetime</topic><topic>Tensors</topic><topic>Virial theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barker, W. E. V.</creatorcontrib><creatorcontrib>Lasenby, A. N.</creatorcontrib><creatorcontrib>Hobson, M. P.</creatorcontrib><creatorcontrib>Handley, W. J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barker, W. E. V.</au><au>Lasenby, A. N.</au><au>Hobson, M. P.</au><au>Handley, W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static energetics in gravity</atitle><jtitle>Journal of mathematical physics</jtitle><date>2019-05</date><risdate>2019</risdate><volume>60</volume><issue>5</issue><spage>52504</spage><pages>52504-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A stress-energy tensor, τab, for linear gravity in the physical spacetime, M, approximated by a flat background, M̌, and adapted to the harmonic gauge, was recently proposed by Butcher, Hobson, and Lasenby. By removing gauge constraints and imposing full metrical general relativity, we find a natural generalization of τab to the pseudotensor of Einstein, Etab. Møller’s pseudotensor, Mtab, is an alternative to Etab formulated using tetrads and is thus naturally adapted to, e.g., Einstein-Cartan gravity. Gauge theory gravity uses the geometric algebra to reproduce Einstein-Cartan gravity and is a Poincaré gauge theory for the spacetime algebra: the tetrad and spin connection appear as gauge fields on Minkowski space, M4. We obtain the pseudotensor of Møller for gauge theory gravity, Mt(a), using a variational approach, also identifying a potentially interesting recipe for constructing conserved currents in that theory. We show that in static, spherical spacetimes containing a gravitational mass MT, the pseudotensors in the spacetime algebra, Mt(a) and Et(a), describe gravitational stress-energy as if the gravitational potential were a scalar (i.e., Klein-Gordon) field, φ, coupled to gravitational mass density, ϱ, on the Minkowski background M4. The old Newtonian formula φ = −MT/r successfully describes even strong fields in this picture. The Newtonian limit of this effect was previously observed in τab on M̌ for linear gravity. We also draw fresh attention to the conserved mass of a static system, MT&lt;MT. When compared with either ϱ or the density of the Komar mass in the Newtonian limit, MT produces a local virial theorem—such behavior is usually associated with the proper mass of the system, MT&gt;MT. We observe that the gravitational energy of Einstein and Møller was added to MT on M4 to give MT. We demonstrate the Klein-Gordon correspondence and mass functions using the “Schwarzschild star” solution for an incompressible perfect fluid ball.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5082730</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8208-6332</orcidid><orcidid>https://orcid.org/0000-0002-5866-0445</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2019-05, Vol.60 (5), p.52504
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_5082730
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algebra
Computational fluid dynamics
Density
Energy
Fluid flow
Gauge theory
Gravitation theory
Gravity
Incompressible flow
Mathematical analysis
Minkowski space
Physics
Relativity
Spacetime
Tensors
Virial theorem
title Static energetics in gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20energetics%20in%20gravity&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Barker,%20W.%20E.%20V.&rft.date=2019-05&rft.volume=60&rft.issue=5&rft.spage=52504&rft.pages=52504-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5082730&rft_dat=%3Cproquest_cross%3E2224642614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224642614&rft_id=info:pmid/&rfr_iscdi=true